On the numerical ranges of some tridiagonal matrices

被引:0
作者
Chien, Ruey Ting [1 ]
Spitkovsky, Ilya M. [1 ,2 ]
机构
[1] New York Univ Abu Dhabi, Div Sci & Math, Abu Dhabi, U Arab Emirates
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
Numerical range; Tridiagonal matrices; FLAT PORTIONS; BOUNDARY;
D O I
10.1016/j.laa.2014.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For certain tridiagonal matrices of small size, we give a complete description of flat portions on the boundary of their numerical range. We also discuss the conditions for these numerical ranges to be elliptical. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:228 / 240
页数:13
相关论文
共 11 条
[1]  
Adam M, 2002, OPER THEOR, V130, P29
[2]   On matrices with elliptical numerical ranges [J].
Brown, ES ;
Spitkovsky, IM .
LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (3-4) :177-193
[3]   On flat portions on the boundary of the numerical range [J].
Brown, ES ;
Spitkovsky, IA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 390 :75-109
[4]   Flat portions on the boundary of the numerical ranges of certain Toeplitz matrices [J].
Chien, Mao-Ting ;
Nakazato, Hiroshi .
LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (1-2) :143-162
[5]   The numerical range of a tridiagonal operator [J].
Chien, Mao-Ting ;
Nakazato, Hiroshi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) :297-304
[6]   Numerical ranges of companion matrices: flat portions on the boundary [J].
Eldred, Jeffrey ;
Rodman, Leiba ;
Spitkovsky, Ilya .
LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (11-12) :1295-1311
[7]   NUMERICAL RANGE OF MATRICES AND LEVINGERS THEOREM [J].
FIEDLER, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 220 :171-180
[8]   Band-diagonal operators [J].
Fong, CK ;
Wu, PY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 248 :185-204
[9]   The numerical range of 3x3 matrices [J].
Keeler, DS ;
Rodman, L ;
Spitkovsky, IM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 252 :115-139
[10]   Unitary tridiagonalization in M(4, C) [J].
Pati, V .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2001, 111 (04) :381-397