Periodic trajectories on stationary Lorentzian manifolds

被引:6
作者
Bartolo, R [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
Lorentzian manifold; Geodesic; Morse index; Kerr spacetime;
D O I
10.1016/S0362-546X(99)00246-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An existence and multiplicity result for periodic trajectories on stationary Lorentzian manifolds, possibly with boundary, whose proof is based on a Morse theory approach is presented. A Lorentzian manifold is a smooth connected finite-dimensional manifold M equipped with a (0,2) tensor field g such that for any z∈M g(z) [·,·] is a nondegenerate symmetric bilinear form on the tangent space TzM having exactly one negative eigenvalue. Moreover, relativistic spacetimes are a particular class of Lorentzian manifolds of dimension four.
引用
收藏
页码:883 / 903
页数:21
相关论文
共 16 条
[1]   On the existence of infinitely many trajectories for a class of static Lorentzian manifolds like Schwarzschild and Reissner-Nordstrom space-times [J].
Bartolo, R ;
Masiello, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (01) :14-38
[2]   ON THE EXISTENCE OF CLOSED GEODESICS ON NONCOMPACT RIEMANNIAN-MANIFOLDS [J].
BENCI, V ;
GIANNONI, F .
DUKE MATHEMATICAL JOURNAL, 1992, 68 (02) :195-215
[3]   ON THE EXISTENCE OF MULTIPLE GEODESICS IN STATIC SPACE-TIMES [J].
BENCI, V ;
FORTUNATO, D ;
GIANNONI, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (01) :79-102
[4]  
BENCI V, 1988, P VAR PROBL PAR
[5]  
BENCI V, 1991, NONLINEAR ANAL TRIBU, P109
[6]   ON THE EXISTENCE OF GEODESICS ON STATIONARY LORENTZ MANIFOLDS WITH CONVEX BOUNDARY [J].
GIANNONI, F ;
MASIELLO, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 101 (02) :340-369
[8]  
GRECO C, 1992, ANN MAT PURA APPL CL, V12, P337
[9]  
Hawking S. W., 1973, The Large Scale Structure of Space-Time
[10]   TIME-LIKE PERIODIC TRAJECTORIES IN STATIONARY LORENTZ MANIFOLDS [J].
MASIELLO, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) :531-545