The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory

被引:19
作者
Albeverio, S. [3 ,4 ,5 ,6 ,7 ]
Khrennikov, A. Yu. [2 ]
Shelkovich, V. M. [1 ]
机构
[1] St Petersburg State Architecture & Civil Engn Uni, Dept Math, St Petersburg 190005, Russia
[2] Vaxjo Univ, Int Ctr Math Modelling Phys & Cognit Sci MSI, SE-35195 Vaxjo, Sweden
[3] Univ Trento, Dipartimento Matemat, Trento, Italy
[4] BiBoS Bielefeld Bonn, Bonn, Germany
[5] Univ Bonn, IZKS, D-5300 Bonn, Germany
[6] Univ Bonn, SFB 611, D-5300 Bonn, Germany
[7] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
基金
俄罗斯基础研究基金会;
关键词
p-Adic pseudo-differential equation; p-Adic pseudo-differential operator; Fractional operator; p-Adic Lizorkin space; p-Adic wavelets; Variable separation method; OPERATORS; MODELS;
D O I
10.1016/j.jmaa.2010.08.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the Cauchy problems for p-adic linear and semi-linear evolutionary pseudo-differential equations (the time-variable t is an element of R and the space-variable x is an element of Q(p)(n)). Among the equations under consideration there are the heat type equation and the Schrodinger type equations (linear and nonlinear). To solve these problems, we develop the "variable separation method" (an analog of the classical Fourier method) which reduces solving evolutionary pseudo-differential equations to solving ordinary differential equations with respect to real variable t. The problem of stabilization for solutions of the Cauchy problems as t -> infinity is also studied. These results give significant advance in the theory of p-adic pseudo-differential equations and can be used in applications. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 98
页数:17
相关论文
共 29 条
[1]   p-Adic semilinear evolutionary pseudodifferential equations in Lizorkin spaces [J].
Albeverio, S. ;
Khrennikov, A. Yu. ;
Shelkovich, V. M. .
DOKLADY MATHEMATICS, 2007, 76 (01) :539-543
[2]   Harmonic analysis in the p-adic Lizorkin spaces:: Fractional operators, pseudo-differential equations, p-adic wavelets, Tauberian theorems [J].
Albeverio, S. ;
Khrennikov, A. Yu. ;
Shelkovich, V. M. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (04) :393-425
[3]   Multidimensional ultrametric pseudodifferential equations [J].
Albeverio, S. ;
Kozyrev, S. V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 265 (01) :13-29
[4]  
[Anonymous], 1964, Generalized Functions, Volume 1: Properties and Operations
[5]  
[Anonymous], 1994, P ADIC VALUED DISTRI
[6]   p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes [J].
Avetisov, VA ;
Bikulov, AH ;
Kozyrev, SV ;
Osipov, VA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (02) :177-189
[7]   Application of p-adic analysis to models of breaking of replica symmetry [J].
Avetisov, VA ;
Bikulov, AH ;
Kozyrev, SV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (50) :8785-8791
[8]   The Cauchy problem for a class of pseudodifferential equations over p-adic field [J].
Chuong, Nguyen Minh ;
Van Co, Nguyen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) :629-645
[9]  
Coddington E. A., 1955, THEORY ORDINARY DIFF
[10]  
Fischenko S, 2006, AIP CONF PROC, V826, P174, DOI 10.1063/1.2193121