Performance Evaluation cells for Deep Submicron Technologies

被引:0
|
作者
Gupta, Shourya [1 ]
Gupta, Kirti [1 ]
Pandey, Neeta [2 ]
机构
[1] Bharati Vidyapeeths Coll Engn, Dept Elect & Commun, New Delhi, India
[2] Delhi Technol Univ, Dept Elect & Commun, New Delhi, India
来源
2016 2ND IEEE INTERNATIONAL INNOVATIVE APPLICATIONS OF COMPUTATIONAL INTELLIGENCE ON POWER, ENERGY AND CONTROLS WITH THEIR IMPACT ON HUMANITY (CIPECH) | 2016年
关键词
6T SRAM cell; 7T SRAM cell; N-Curve; Active Leakage Current; Static Voltage Noise Margin; Static Current Noise Margin; Write Trip Voltage; Write Trip Current; Standby Leakage Current; Read current; Data Retention Voltage; VARIABILITY; STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, different Static RAM (SRAM) cell structures have been analysed in deep submicron regions. A 6T, 7T, 8T and 9T SRAM cell have been compared on the basis of Static Voltage Noise Margin (SVNM), Write Trip Voltage (WTV), Static Current Noise Margin (SINM), Write Trip Current (WTI), Active Leakage Current, Cell Standby Leakage Current, Read Current and Data Retention Voltage (DRV). The recent N-curve method is used over the traditionally used Butterfly Curve method for better analysis in submicron regions. The SRAM cell simulations are performed on 22nm, 32nm and 45nm CMOS technology nodes. The results show that the 6T SRAM cell has the poorest read and write margins and the highest active leakage, standby leakage and read currents across all technology nodes. Also, the 7T cell structure shows the best performance, exhibiting the highest write margins, the lowest active leakage current, lowest data retention voltage and the lowest read and standby-leakage currents across all technology nodes.
引用
收藏
页码:292 / 296
页数:5
相关论文
共 50 条
  • [1] High-performance, deep-submicron CMOS technologies
    Sugii, T
    Deura, M
    Nara, Y
    FUJITSU SCIENTIFIC & TECHNICAL JOURNAL, 1996, 32 (01): : 85 - 93
  • [2] Interconnect crosstalk noise evaluation in deep-submicron technologies
    Liu, Xiaoxiao
    Ma, Guangsheng
    Shao, Jingbo
    Yang, Zhi
    Wang, Guanjun
    MICROELECTRONICS RELIABILITY, 2009, 49 (02) : 170 - 177
  • [3] Mainstream memory technologies in deep submicron
    Natarajan, S
    Alvandpour, A
    MELECON 2004: PROCEEDINGS OF THE 12TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1-3, 2004, : 175 - 178
  • [4] Advanced routing for deep submicron technologies
    Brashears, R
    Kahng, A
    COMPUTER DESIGN, 1997, : 10 - 11
  • [5] Embedded SRAM design in deep deep submicron technologies
    Dehaene, W.
    Cosemans, S.
    Vignon, A.
    Catthoor, F.
    Geens, P.
    ESSCIRC 2007: PROCEEDINGS OF THE 33RD EUROPEAN SOLID-STATE CIRCUITS CONFERENCE, 2007, : 384 - 391
  • [6] Deep submicron CMOS technologies for the LHC experiments
    Jarron, P
    Anelli, G
    Calin, T
    Cosculluela, J
    Campbell, B
    Delmastro, M
    Faccio, F
    Giraldo, A
    Heijne, E
    Kloukinas, K
    Letheren, M
    Nicolaidis, M
    Moreira, P
    Paccagnella, A
    Marchioro, A
    Snoeys, W
    Velazco, R
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 78 : 625 - 634
  • [7] High-performance deep submicron CMOS technologies with polycrystalline-SiGe gates
    Ponomarev, YV
    Stolk, PA
    Salm, C
    Schmitz, J
    Woerlee, PH
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2000, 47 (04) : 848 - 855
  • [8] PAD cells performances in submicron technologies
    Dobre, Mihaela-Daniela
    Brezeanu, Gheorghe
    2016 39TH INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS), 2016, : 205 - 208
  • [9] Radiation hardening of ASICs in deep submicron CMOS technologies
    Szczygiel, R
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS III, 2005, 5775 : 103 - 110
  • [10] Low power clocking strategies in deep submicron technologies
    Hosny, M. Sarny
    Wu, Yuejian
    2008 IEEE INTERNATIONAL CONFERENCE ON INTEGRATED CIRCUIT DESIGN AND TECHNOLOGY, PROCEEDINGS, 2008, : 143 - +