Limit cycles in a general Kolmogorov model

被引:35
|
作者
Huang, XC [1 ]
Zhu, LM [1 ]
机构
[1] Yangzhou Polytech Univ, Dept Math, Yangzhou 225002, Jiangsu, Peoples R China
关键词
limit cycle; predator-prey system; Kolmogorov model;
D O I
10.1016/j.na.2004.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of limit cycles is interesting and significant both in theory and applications. In mathematical ecology, finding models that display a stable limit cycle-an attracting stable self-sustained oscillation, is a primary work. In this paper, a general Kolmogorov system, which includes the Gause-type model (Math. Biosci. 88 (1988) 67) the general predator-prey model (J. Phys. A: Math. Gen. 21 (1988) L685; Math. Biosci. 96 (1989) 47), and many other models (J. Biomath. 15(3) (2001) 266; J. Biomath. 16(2) (2001) 156; J. Math. 21(22) (2001) 145), is studied. The conditions for the existence and uniqueness of limit cycles in this model are proved. Some known results are easily derived as an illustration of our work. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1393 / 1414
页数:22
相关论文
共 50 条
  • [1] The limit cycles of a general Kolmogorov system
    Yuan, Yueding
    Chen, Haibo
    Du, Chaoxiong
    Yuan, Yuejin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (02) : 225 - 237
  • [2] Limit Cycles of A Cubic Kolmogorov System
    Li, Feng
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 619 - 622
  • [3] Limit Cycles Bifurcations for a Class of Kolmogorov Model in Symmetrical Vector Field
    Du Chaoxiong
    Liu Yirong
    Huang Wentao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03):
  • [4] Limit Cycles in a Class of Quartic Kolmogorov Model with Three Positive Equilibrium Points
    Du, Chaoxiong
    Liu, Yirong
    Zhang, Qi
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (06):
  • [5] Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model
    Du, Chaoxiong
    Huang, Wentao
    NONLINEAR DYNAMICS, 2013, 72 (1-2) : 197 - 206
  • [6] Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model
    Chaoxiong Du
    Wentao Huang
    Nonlinear Dynamics, 2013, 72 : 197 - 206
  • [7] Existence of Limit Cycles for a Cubic Kolmogorov System with a Hyperbolic Solution
    沈伯骞
    刘德明
    NortheasternMathematicalJournal, 2000, (01) : 91 - 95
  • [8] Stable limit cycles in an intraguild predation model with general functional responses
    Ble, Gamaliel
    Castellanos, Victor
    Loreto Hernandez, Ivan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) : 2219 - 2233
  • [9] Limit cycles in a tritrophic food chain model with general functional responses
    Ble, Gamaliel
    Loreto-Hernandez, Ivan
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2022, 23 (3-4) : 449 - 460
  • [10] Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses
    Fekih-Salem, R.
    Rapaport, A.
    Sari, T.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (17-18) : 7656 - 7677