Nonlinear Stability of Periodic Traveling Wave Solutions for (n+1)-Dimensional Coupled Nonlinear Klein-Gordon Equations

被引:0
|
作者
Sun, Cong [1 ]
Jiang, Bo [2 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Jilin Jianzhu Univ, City Coll, Changchun 130111, Peoples R China
关键词
ELLIPTIC FUNCTION EXPANSION; STANDING WAVES; SOLITARY WAVES; INSTABILITY;
D O I
10.1155/2015/546121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the existence and orbital stability of smooth periodic traveling waves solutions of the (n + 1)-dimensional coupled nonlinear Klein-Gordon equations. Such a system occurs in quantum mechanics, fluid mechanics, and optical fiber communication. Inspired by Angulo Pava's results (2007), and by applying the stability theory established by Grillakis et al. (1987), we prove the existence of periodic traveling waves solutions and obtain the orbital stability of the solutions to this system.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Exact solutions of coupled nonlinear Klein-Gordon equations
    Yusufoglu, E.
    Bekir, A.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (11-12) : 1694 - 1700
  • [12] Soliton solutions of coupled nonlinear Klein-Gordon equations
    Alagesan, T
    Chung, Y
    Nakkeeran, K
    CHAOS SOLITONS & FRACTALS, 2004, 21 (04) : 879 - 882
  • [13] Double Traveling Wave Solutions of the Coupled Nonlinear Klein-Gordon Equations and the Coupled Schrdinger-Boussinesq Equation
    Lanfang SHI
    Ziwen NIE
    JournalofMathematicalResearchwithApplications, 2017, 37 (06) : 679 - 696
  • [14] New Exact Traveling Wave Solutions for the Nonlinear Klein-Gordon Equation
    Zhang, Zaiyun
    TURKISH JOURNAL OF PHYSICS, 2008, 32 (05): : 235 - 240
  • [15] Bifurcation and exact traveling wave solutions for the nonlinear Klein-Gordon equation
    Arab, Meraa
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (04): : 2643 - 2661
  • [16] On the spectral and modulational stability of periodic wavetrains for nonlinear Klein-Gordon equations
    Jones, Christopher K. R. T.
    Marangell, Robert
    Miller, Peter D.
    Plaza, Ramon G.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02): : 417 - 429
  • [17] A FAMILY OF NONLINEAR KLEIN-GORDON EQUATIONS AND THEIR SOLUTIONS
    GRUNDLAND, AM
    INFELD, E
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (07) : 2498 - 2503
  • [18] LOCALIZED SOLUTIONS OF NONLINEAR KLEIN-GORDON EQUATIONS
    WERLE, J
    PHYSICS LETTERS B, 1977, 71 (02) : 367 - 368
  • [19] On the spectral and modulational stability of periodic wavetrains for nonlinear Klein-Gordon equations
    Christopher K. R. T. Jones
    Robert Marangell
    Peter D. Miller
    Ramón G. Plaza
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 417 - 429
  • [20] BILINEAR FORM AND SOLITON SOLUTIONS FOR THE COUPLED NONLINEAR KLEIN-GORDON EQUATIONS
    Li, He
    Meng, Xiang-Hua
    Tian, Bo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (15):