Room temperature organic exciton-polariton condensate in a lattice

被引:68
作者
Dusel, M. [1 ,2 ]
Betzold, S. [1 ,2 ]
Egorov, O. A. [3 ]
Klembt, S. [1 ,2 ]
Ohmer, J. [4 ]
Fischer, U. [4 ]
Hoefling, S. [1 ,2 ,5 ]
Schneider, C. [1 ,2 ]
机构
[1] Univ Wurzburg, Tech Phys, Phys Inst, D-97074 Wurzburg, Germany
[2] Univ Wurzburg, Wurzburg Dresden Cluster Excellence Ctqmat, D-97074 Wurzburg, Germany
[3] Friedrich Schiller Univ Jena, Abbe Ctr Photon, Inst Condensed Matter Theory & Solid State Opt, Max Wien Pl 1, D-07743 Jena, Germany
[4] Univ Wurzburg, Dept Biochem, D-97074 Wurzburg, Germany
[5] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
基金
英国工程与自然科学研究理事会;
关键词
BOSE-EINSTEIN CONDENSATION; QUANTUM SIMULATIONS; PHYSICS;
D O I
10.1038/s41467-020-16656-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Interacting Bosons in artificial lattices have emerged as a modern platform to explore collective manybody phenomena and exotic phases of matter as well as to enable advanced on-chip simulators. On chip, exciton-polaritons emerged as a promising system to implement and study bosonic non-linear systems in lattices, demanding cryogenic temperatures. We discuss an experiment conducted on a polaritonic lattice at ambient conditions: We utilize fluorescent proteins providing ultra-stable Frenkel excitons. Their soft nature allows for mechanically shaping them in the photonic lattice. We demonstrate controlled loading of the coherent condensate in distinct orbital lattice modes of different symmetries. Finally, we explore the self-localization of the condensate in a gap-state, driven by the interplay of effective interaction and negative effective mass in our lattice. We believe that this work establishes organic polaritons as a serious contender to the well-established GaAs platform for a wide range of applications relying on coherent Bosons in lattices. Many studies of polariton condensates have been limited to low temperatures. Here the authors demonstrate ambient polariton condensation in lattices using organic traps that profit from the stability of organic excitons and the large Rabi splitting.
引用
收藏
页数:7
相关论文
共 39 条
[1]   Bose-einstein condensation of microcavity polaritons in a trap [J].
Balili, R. ;
Hartwell, V. ;
Snoke, D. ;
Pfeiffer, L. ;
West, K. .
SCIENCE, 2007, 316 (5827) :1007-1010
[2]  
Berloff NG, 2017, NAT MATER, V16, P1120, DOI [10.1038/NMAT4971, 10.1038/nmat4971]
[3]   Coherence and Interaction in Confined Room-Temperature Polariton Condensates with Frenkel Excitons [J].
Betzold, Simon ;
Dusel, Marco ;
Kyriienko, Oleksandr ;
Dietrich, Christof P. ;
Klembt, Sebastian ;
Ohmer, Juergen ;
Fischer, Utz ;
Shelykh, Ivan A. ;
Schneider, Christian ;
Hoefling, Sven .
ACS PHOTONICS, 2020, 7 (02) :384-+
[4]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/nphys2252, 10.1038/NPHYS2252]
[5]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[6]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/NPHYS2259, 10.1038/nphys2259]
[7]   Dynamical Instability of a Nonequilibrium Exciton-Polariton Condensate [J].
Bobrovska, Nataliya ;
Matuszewski, Michal ;
Daskalakis, Konstantinos S. ;
Maier, Stefan A. ;
Kena-Cohen, Stephane .
ACS PHOTONICS, 2018, 5 (01) :111-118
[8]   Order parameter at the boundary of a trapped Bose gas [J].
Dalfovo, F ;
Pitaevskii, L ;
Stringari, S .
PHYSICAL REVIEW A, 1996, 54 (05) :4213-4217
[9]  
Daskalakis KS, 2014, NAT MATER, V13, P272, DOI [10.1038/NMAT3874, 10.1038/nmat3874]
[10]   Towards polariton blockade of confined exciton-polaritons [J].
Deiteil, Aymeric ;
Fink, Thomas ;
Schade, Anne ;
Hoefling, Sven ;
Schneider, Christian ;
Imamoglu, Atac .
NATURE MATERIALS, 2019, 18 (03) :219-+