Textural and adsorption characteristics of carbon xerogel adsorbents for removal of Cu (II) ions from aqueous solution

被引:44
|
作者
Girgis, Badie S. [1 ]
El-Sherif, Iman Y. [2 ]
Attia, Amina A. [1 ]
Fathy, Nady A. [1 ]
机构
[1] Natl Res Ctr, Dept Phys Chem, Lab Surface Chem & Catalysis, Giza 12622, Egypt
[2] Natl Res Ctr, Water Pollut Lab, Giza 12622, Egypt
关键词
Resorcinol-formaldehyde resin; Carbon xerogels; Porosity; Copper (II) removal; HEAVY-METAL IONS; ACTIVATED CARBON; CADMIUM; COPPER; WATER; HAZELNUT; PH;
D O I
10.1016/j.jnoncrysol.2011.12.004
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Resorcinol-formaldehyde (RF) carbon xerogels were synthesized using different resorcinol/sodium carbonate catalyst molar ratios (R/C = 50, 200, 500 and 1000) and heat treatment temperatures (HTT = 500, 600 and 700) under no external gas flow. The carbon adsorbents were extensively characterized by CHO content, FTIR, TEM and nitrogen adsorption isotherm at 77 K. The effect of R/C, HTT and oxygen content on the development of porosity within carbons was studied. Also, the adsorption capacity of these adsorbents was investigated by the removal of copper (II) ions from aqueous solution using single bottle test. The produced carbon xerogels exhibit a micro-mesopore character, but with different extents depending on the mechanism of porosity generation in relation to R/C. HTT and oxygen functional groups. Results show that the optimum conditions to obtain porous carbon xerogels were the highest R/C = 500-1000 in combination with carbonization preferably at 600 or 700 degrees C. Single bottle removal of Cu (II) ions indicated the developed carbons with appreciable capacity (q(u) = 32-130 mg/g) which are controlled by the surface area and surface chemical nature (acidic O-functional groups). Finally, the present investigation provides a new, nanoporous type of porous carbon adsorbents with high adsorption capacity for removal of heavy metals from wastewater media. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:741 / 747
页数:7
相关论文
共 50 条
  • [41] Adsorption and desorption studies of Delonix regia pods and leaves: Removal and recovery of Ni(II) and Cu(II) ions from aqueous solution
    Babalola B.M.
    Babalola A.O.
    Akintayo C.O.
    Lawal O.S.
    Abimbade S.F.
    Oseghe E.O.
    Akinola L.S.
    Ayanda O.S.
    Drinking Water Engineering and Science, 2020, 13 (01) : 15 - 27
  • [42] Application of titanate nanotubes for Cu(II) ions adsorptive removal from aqueous solution
    Liu, Shin-Shou
    Lee, Chung-Kung
    Chen, Huang-Chi
    Wang, Cheng-Cai
    Juang, Lain-Chuen
    CHEMICAL ENGINEERING JOURNAL, 2009, 147 (2-3) : 188 - 193
  • [43] Novel Polymeric Adsorbents Bearing Amide, Pyridyl, Azomethine and Thiourea Binding Sites for the Removal of Cu(II) and Pb(II) Ions from Aqueous Solution
    Kirupha, Selvaraj Dinesh
    Murugesan, Arukkani
    Vidhyadevi, Thangaraj
    Baskaralingam, Palanithamy
    Sivanesan, Subramanian
    Ravikumar, Lingam
    SEPARATION SCIENCE AND TECHNOLOGY, 2012, 48 (02) : 254 - 262
  • [44] Studies on removal of Cu(II) from aqueous solution by adsorption on fly ash agglomerates
    Ulatowska, Justyna
    Legawiec, Krzysztof Jan
    Drzyzga, Jowita
    Polowczyk, Izabela
    DESALINATION AND WATER TREATMENT, 2020, 207 : 287 - 299
  • [45] Removal of Cu(II) and Pb(II) ions from aqueous solutions by adsorption on sawdust of Meranti wood
    Ahmad, Anees
    Rafatullah, Mohd.
    Sulaiman, Othman
    Ibrahim, Mahamad Hakimi
    Chii, Yap Yee
    Siddique, Bazlul Mobin
    DESALINATION, 2009, 247 (1-3) : 636 - 646
  • [46] MIXED ADSORBENTS FOR CU(II) REMOVAL FROM AQUEOUS-SOLUTIONS
    PANDAY, KK
    PRASAD, G
    SINGH, VN
    ENVIRONMENTAL TECHNOLOGY LETTERS, 1986, 7 (10): : 547 - 554
  • [47] Synthesis and characterization of cellulose based adsorbents for removal of Ni(II), Cu(II) and Pb(II) ions from aqueous solutions
    Kumar, Rajesh
    Sharma, Rajeev Kr.
    REACTIVE & FUNCTIONAL POLYMERS, 2019, 140 : 82 - 92
  • [48] Preparation and adsorption characteristics of an ion-imprinted polymer for fast removal of Ni(II) ions from aqueous solution
    Zhou, Zhiyong
    Kong, Delong
    Zhu, Huiying
    Wang, Nian
    Wang, Zhuo
    Wang, Qi
    Liu, Wei
    Li, Qunsheng
    Zhang, Weidong
    Ren, Zhongqi
    JOURNAL OF HAZARDOUS MATERIALS, 2018, 341 : 355 - 364
  • [49] Adsorption of Zn(II) from aqueous solution by using different adsorbents
    Bhattacharya, A. K.
    Mandal, S. N.
    Das, S. K.
    CHEMICAL ENGINEERING JOURNAL, 2006, 123 (1-2) : 43 - 51
  • [50] Use of Laponite as Adsorbents for Ni(II) Removal from Aqueous Solution
    Cao, Xiaoqiang
    Yan, Bingqi
    Huang, Yongqing
    Zhang, Yan
    Li, Lin
    Qiu, Jun
    Lyu, Xianjun
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2018, 37 (03) : 942 - 950