Dissimilarity-Based Linear Models for Corporate Bankruptcy Prediction

被引:17
|
作者
Garcia, Vicente [1 ]
Marques, Ana I. [2 ]
Salvador Sanchez, J. [3 ]
Ochoa-Dominguez, Humberto J. [4 ]
机构
[1] Univ Autonoma Ciudad Juarez, Div Multidisciplinaria Ciudad Univ, Ciudad Juarez 32310, Chihuahua, Mexico
[2] Univ Jaume 1, Dept Business Adm & Mkt, Castellon De La Plana 12071, Spain
[3] Univ Jaume 1, Inst New Imaging Technol, Dept Comp Languages & Syst, Castellon De La Plana 12071, Spain
[4] Univ Autonoma Ciudad Juarez, Dept Elect & Comp Engn, Ciudad Juarez 32310, Chihuahua, Mexico
关键词
Bankruptcy prediction; Dissimilarity representation; Linear classifier; Qualitative variables; SUPPORT VECTOR MACHINE; FINANCIAL DISTRESS; CLASSIFICATION; FIRMS; ENSEMBLES; HYBRID;
D O I
10.1007/s10614-017-9783-4
中图分类号
F [经济];
学科分类号
02 ;
摘要
Bankruptcy prediction has acquired great relevance for financial institutions due to the complexity of global economies and the growing number of corporate failures, especially since the world financial crisis of 2008. In this paper, the problem of corporate bankruptcy prediction is faced by means of four linear classifiers (Fisher's linear discriminant, linear discriminant classifier, support vector machine and logistic regression), which are designed on the dissimilarity space instead of the classical feature space. Experimental results indicate that the prediction methods implemented with the dissimilarity representation perform considerably better than the same techniques when applied onto the feature space, in terms of overall accuracy, true-positive rate and true-negative rate.
引用
收藏
页码:1019 / 1031
页数:13
相关论文
共 50 条
  • [1] Dissimilarity-Based Linear Models for Corporate Bankruptcy Prediction
    Vicente García
    Ana I. Marqués
    J. Salvador Sánchez
    Humberto J. Ochoa-Domínguez
    Computational Economics, 2019, 53 : 1019 - 1031
  • [2] Dissimilarity-Based Detection of Schizophrenia
    Ulas, Aydin
    Duin, Robert P. W.
    Castellani, Umberto
    Loog, Marco
    Mirtuono, Pasquale
    Bicego, Manuele
    Murino, Vittorio
    Bellani, Marcella
    Cerruti, Stefania
    Tansella, Michele
    Brambilla, Paolo
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2011, 21 (02) : 179 - 192
  • [3] Dissimilarity-Based Classifications in Eigenspaces
    Kim, Sang-Woon
    Duin, Robert P. W.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, 2011, 7042 : 425 - +
  • [4] Dissimilarity-based representation for radiomics applications
    Cao, Hongliu
    Bernard, Simon
    Heutte, Laurent
    Sabourin, Robert
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 53 - 58
  • [5] Dissimilarity-Based Sparse Subset Selection
    Elhamifar, Ehsan
    Sapiro, Guillermo
    Sastry, S. Shankar
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (11) : 2182 - 2197
  • [6] Prototype selection for dissimilarity-based classifiers
    Pekalska, E
    Duin, RPW
    Paclík, P
    PATTERN RECOGNITION, 2006, 39 (02) : 189 - 208
  • [7] DISSIMILARITY-BASED BIPOLAR SUPERVISED CLASSIFICATION
    Tinguaro Rodriguez, J.
    Montero, Javier
    Vitoriano, Begona
    UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2012, 7 : 894 - 899
  • [8] Dissimilarity-based classification for vectorial representations
    Pekalska, Elzbieta
    Duin, Robert P. W.
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 137 - +
  • [9] Dissimilarity-based compound selection techniques
    Lajiness, MS
    PERSPECTIVES IN DRUG DISCOVERY AND DESIGN, 1997, 7-8 : 65 - 84
  • [10] A Dissimilarity-based Drift Detection Method
    Pinage, Felipe A.
    dos Santos, Eulanda M.
    2015 IEEE 27TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2015), 2015, : 1069 - 1076