Informationally complete joint measurements on finite quantum systems

被引:45
作者
Carmeli, Claudio [1 ]
Heinosaari, Teiko [2 ]
Toigo, Alessandro [3 ,4 ]
机构
[1] Univ Genoa, DIME, I-17100 Savona, Italy
[2] Univ Turku, Dept Phys & Astron, Turku Ctr Quantum Phys, FI-20014 Turku, Finland
[3] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[4] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 01期
基金
芬兰科学院;
关键词
STATE; OBSERVABLES; REPRESENTATIONS; MECHANICS;
D O I
10.1103/PhysRevA.85.012109
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that there are informationally complete joint measurements of two conjugated observables on a finite quantum system, meaning that they enable the identification of all quantum states from their measurement outcome statistics. We further demonstrate that it is possible to implement a joint observable as a sequential measurement. If we require minimal noise in the joint measurement, then the joint observable is unique. If d is odd, then this observable is informationally complete. But if d is even, then the joint observable is not informationally complete, and one has to allow more noise in order to obtain informational completeness.
引用
收藏
页数:13
相关论文
共 40 条
[1]   Commutative POVMs and Fuzzy Observables [J].
Ali, S. Twareque ;
Carmeli, Claudio ;
Heinosaari, Teiko ;
Toigo, Alessandro .
FOUNDATIONS OF PHYSICS, 2009, 39 (06) :593-612
[2]   SYSTEMS OF IMPRIMITIVITY AND REPRESENTATIONS OF QUANTUM-MECHANICS ON FUZZY PHASE SPACES [J].
ALI, ST ;
PRUGOVECKI, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (02) :219-228
[3]  
[Anonymous], 2006, Foundations of Quantum Mechanics, an Empiricist Approach
[4]   Symmetric informationally complete-positive operator valued measures and the extended Clifford group [J].
Appleby, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[5]   THE DETERMINATION OF GAUSS SUMS [J].
BERNDT, BC ;
EVANS, RJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 5 (02) :107-129
[6]   Maximal sets of mutually unbiased quantum states in dimension 6 [J].
Brierley, Stephen ;
Weigert, Stefan .
PHYSICAL REVIEW A, 2008, 78 (04)
[8]   UNSHARP REALITY AND JOINT MEASUREMENTS FOR SPIN OBSERVABLES [J].
BUSCH, P .
PHYSICAL REVIEW D, 1986, 33 (08) :2253-2261
[9]   PROBABILITY STRUCTURES FOR QUANTUM STATE-SPACES [J].
BUSCH, P ;
CASSINELLI, G ;
LAHTI, PJ .
REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (07) :1105-1121
[10]   ON THE QUANTUM-THEORY OF SEQUENTIAL MEASUREMENTS [J].
BUSCH, P ;
CASSINELLI, G ;
LAHTI, PJ .
FOUNDATIONS OF PHYSICS, 1990, 20 (07) :757-775