Binding numbers for fractional (a, b, k)-critical covered graphs

被引:0
|
作者
Zhou, Sizhong [1 ]
Liu, Hongxia [2 ]
Xu, Yang [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Mengxi Rd 2, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[3] Qingdao Agr Univ, Dept Math, Qingdao 266109, Shandong, Peoples R China
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2020年 / 21卷 / 02期
关键词
graph; binding number; fractional; a; b; -factor; b]-covered graph; (a; k)-critical covered graph; ORTHOGONAL FACTORIZATIONS; TOUGHNESS CONDITION; (G; (K;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A graph G is said to be fractional (a, b, k)-critical covered if after deleting any k vertices of G, the remaining graph of G is fractional [a, b]-covered. In this article, we gain a binding number condition for a graph to be fractional (a,b,k)-critical covered, which is an improvement and extension of Yuan and Hao's previous result [Y. Yuan and R. Hao, Neighborhood union conditions for fractional [a, b]-covered graphs, Bull. Malays. Math. Sci. Soc., http s://doi.org/10.1007/s40840-018-0669-y, in press].
引用
收藏
页码:115 / 121
页数:7
相关论文
共 50 条
  • [41] A sufficient condition for a graph to be a fractional (a, b, n)-critical deleted graph
    Gao, Wei
    ARS COMBINATORIA, 2015, 119 : 377 - 390
  • [42] Toughness and (a, b, k)-critical graphs
    Zhou, Sizhong
    Jiang, Jiashang
    INFORMATION PROCESSING LETTERS, 2011, 111 (09) : 403 - 407
  • [43] A note on fractional ID-[a, b]-factor-critical covered graphs
    Zhou, Sizhong
    Liu, Hongxia
    Xu, Yang
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 511 - 516
  • [44] A new sufficient condition for graphs to be (a, b, k)-critical graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2015, 118 : 191 - 199
  • [45] On all fractional (a, b, k)-critical graphs
    Si Zhong Zhou
    Zhi Ren Sun
    Acta Mathematica Sinica, English Series, 2014, 30 : 696 - 702
  • [46] A degree condition for fractional (g, f, n)-critical covered graphs
    Lv, Xiangyang
    AIMS MATHEMATICS, 2020, 5 (02): : 872 - 878
  • [47] Some New Sufficient Conditions for Graphs to be (a, b, k)-Critical Graphs
    Zhou, Sizhong
    Xu, Zurun
    Zong, Minggang
    ARS COMBINATORIA, 2011, 102 : 11 - 20
  • [48] A MINIMUM DEGREE CONDITION FOR FRACTIONAL ID-[a, b]-FACTOR-CRITICAL GRAPHS
    Zhou, Sizhong
    Sun, Zhiren
    Liu, Hongxia
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (02) : 177 - 183
  • [49] BINDING NUMBER AND MINIMUM DEGREE FOR FRACTIONAL (k, m)-DELETED GRAPHS
    Zhou, Sizhong
    Bian, Qiuxiang
    Xu, Lan
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 85 (01) : 60 - 67
  • [50] Neighbourhoods of independent sets for (a, b, k)-critical graphs
    Zhou, Sizhong
    Xu, Yang
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (02) : 277 - 283