Binding numbers for fractional (a, b, k)-critical covered graphs

被引:0
|
作者
Zhou, Sizhong [1 ]
Liu, Hongxia [2 ]
Xu, Yang [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Mengxi Rd 2, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[3] Qingdao Agr Univ, Dept Math, Qingdao 266109, Shandong, Peoples R China
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2020年 / 21卷 / 02期
关键词
graph; binding number; fractional; a; b; -factor; b]-covered graph; (a; k)-critical covered graph; ORTHOGONAL FACTORIZATIONS; TOUGHNESS CONDITION; (G; (K;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A graph G is said to be fractional (a, b, k)-critical covered if after deleting any k vertices of G, the remaining graph of G is fractional [a, b]-covered. In this article, we gain a binding number condition for a graph to be fractional (a,b,k)-critical covered, which is an improvement and extension of Yuan and Hao's previous result [Y. Yuan and R. Hao, Neighborhood union conditions for fractional [a, b]-covered graphs, Bull. Malays. Math. Sci. Soc., http s://doi.org/10.1007/s40840-018-0669-y, in press].
引用
收藏
页码:115 / 121
页数:7
相关论文
共 50 条
  • [31] INDEPENDENCE NUMBER AND CONNECTIVITY FOR FRACTIONAL (a, b, k)-CRITICAL COVERED GRAPHS
    Zhou, Sizhong
    Wu, Jiancheng
    Liu, Hongxia
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (04) : 2535 - 2542
  • [32] A Result on (a, b, k)-Critical Graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2014, 113A : 3 - 10
  • [33] Toughness condition for the existence of all fractional (a, b, k)-critical graphs
    Yuan, Yuan
    Hao, Rong-Xia
    DISCRETE MATHEMATICS, 2019, 342 (08) : 2308 - 2314
  • [34] Isolated toughness and fractional (a,b,n)-critical graphs
    Gao, Wei
    Wang, Weifan
    Chen, Yaojun
    CONNECTION SCIENCE, 2023, 35 (01)
  • [35] Degree Conditions for Graphs to Be Fractional k-Covered Graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2015, 118 : 135 - 142
  • [36] On all fractional (a, b, k)-critical graphs
    Zhou, Si Zhong
    Sun, Zhi Ren
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) : 696 - 702
  • [37] Some properties of (a , b , k )-critical graphs
    Zhou, Sizhong
    Zhang, Yuli
    Liu, Hongxia
    FILOMAT, 2024, 38 (16) : 5885 - 5894
  • [38] On All Fractional(a,b,k)-Critical Graphs
    Si Zhong ZHOU
    Zhi Ren SUN
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (04) : 696 - 702
  • [39] A neighborhood condition for all fractional (a, b, k)-critical graphs
    Jiang, Jiashang
    ARS COMBINATORIA, 2019, 142 : 55 - 63
  • [40] Degree conditions for graphs to be fractional (a, b, n)-critical graphs
    Li J.
    Ma Y.
    Journal of Systems Science and Complexity, 2006, 19 (4) : 491 - 497