Binding numbers for fractional (a, b, k)-critical covered graphs

被引:0
|
作者
Zhou, Sizhong [1 ]
Liu, Hongxia [2 ]
Xu, Yang [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Mengxi Rd 2, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[3] Qingdao Agr Univ, Dept Math, Qingdao 266109, Shandong, Peoples R China
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2020年 / 21卷 / 02期
关键词
graph; binding number; fractional; a; b; -factor; b]-covered graph; (a; k)-critical covered graph; ORTHOGONAL FACTORIZATIONS; TOUGHNESS CONDITION; (G; (K;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A graph G is said to be fractional (a, b, k)-critical covered if after deleting any k vertices of G, the remaining graph of G is fractional [a, b]-covered. In this article, we gain a binding number condition for a graph to be fractional (a,b,k)-critical covered, which is an improvement and extension of Yuan and Hao's previous result [Y. Yuan and R. Hao, Neighborhood union conditions for fractional [a, b]-covered graphs, Bull. Malays. Math. Sci. Soc., http s://doi.org/10.1007/s40840-018-0669-y, in press].
引用
收藏
页码:115 / 121
页数:7
相关论文
共 50 条
  • [11] Discussion on Fractional (a, b, k)-critical Covered Graphs
    Zhang, Wei
    Wang, Su-fang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (02): : 304 - 311
  • [12] A Result on Fractional (a, b, k)-critical Covered Graphs
    Si-zhong Zhou
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 657 - 664
  • [13] A Note of Generalization of Fractional ID-factor-critical Graphs
    Zhou, Sizhong
    FUNDAMENTA INFORMATICAE, 2022, 187 (01) : 61 - 69
  • [14] Research on Fractional Critical Covered Graphs
    Wang, S.
    Zhang, W.
    PROBLEMS OF INFORMATION TRANSMISSION, 2020, 56 (03) : 270 - 277
  • [15] A neighborhood union condition for fractional (a, b, k)-critical covered graphs
    Zhou, Sizhong
    DISCRETE APPLIED MATHEMATICS, 2022, 323 : 343 - 348
  • [16] Binding number and minimum degree for (a, b, k)-critical graphs
    Zhou, Sizhong
    Duan, Ziming
    UTILITAS MATHEMATICA, 2012, 88 : 309 - 315
  • [17] An isolated toughness condition for graphs to be fractional (a, b, k)-critical graphs
    Zhou, Sizhong
    Pan, Quanru
    UTILITAS MATHEMATICA, 2013, 92 : 251 - 260
  • [18] Toughness for Fractional (2, b, k)-Critical Covered Graphs
    Su-Fang Wang
    Wei Zhang
    Journal of the Operations Research Society of China, 2023, 11 : 197 - 205
  • [19] Binding numbers and fractional (g, f)-deleted graphs
    Zhou, Sizhong
    UTILITAS MATHEMATICA, 2014, 93 : 305 - 314
  • [20] BINDING NUMBERS AND FRACTIONAL (g, f, n)-CRITICAL GRAPHS
    Zhou, Sizhong
    Sun, Zhiren
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2016, 34 (5-6): : 435 - 441