The influence of input data standardization method on prediction accuracy of artificial neural networks

被引:64
作者
Anysz, Hubert [1 ]
Zbiciak, Artur [1 ]
Ibadov, Nabi [1 ]
机构
[1] Warsaw Univ Technol, Fac Civil Engn, Armii Ludowej16, PL-00637 Warsaw, Poland
来源
XXV POLISH - RUSSIAN - SLOVAK SEMINAR -THEORETICAL FOUNDATION OF CIVIL ENGINEERING | 2016年 / 153卷
关键词
input data standardization; artificial neural networks ANN; building contracts completion date predicting;
D O I
10.1016/j.proeng.2016.08.081
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Achieving good results in applying artificial neural networks (ANN) in predicting requires some preparatory works on the set of data. One of them is standardization which is necessary when nonlinear activation function is applied. Basing on predicting completion period of building contracts by multi-layer ANN with error backpropagation algorithm, six different methods of input data standardization were checked in order to determine which allows to achieve the most accurate predictions. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:66 / 70
页数:5
相关论文
共 50 条
[31]   MODELING OF ABRASIVE WATER JET MACHINING USING TAGUCHI METHOD AND ARTIFICIAL NEURAL NETWORKS [J].
Pappas, Menelaos ;
Ntziantzias, Ioannis ;
Kechagias, John ;
Vaxevanidis, Nikolaos .
NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS, 2011, :377-380
[33]   Thermal Behavior Prediction of Sludge Co-Combustion with Coal: Curve Extraction and Artificial Neural Networks [J].
Wen, Chaojun ;
Lu, Junlin ;
Lin, Xiaoqing ;
Ying, Yuxuan ;
Ma, Yunfeng ;
Yu, Hong ;
Yu, Wenxin ;
Huang, Qunxing ;
Li, Xiaodong ;
Yan, Jianhua ;
Everson, Raymond Cecil .
PROCESSES, 2023, 11 (08)
[34]   Prediction of insulating transformer oils breakdown voltage considering barrier effect based on artificial neural networks [J].
Ghoneim, Sherif S. M. ;
Dessouky, Sobhy S. ;
Elfaraskoury, Adel A. ;
Sharaf, Ahmed B. Abo .
ELECTRICAL ENGINEERING, 2018, 100 (04) :2231-2242
[35]   Prediction Of Tensile And Shear Strength Of Friction Surfaced Tool Steel Deposit By Using Artificial Neural Networks [J].
Hussain, M. Manzoor ;
Raju, V. Pitchi ;
Kandasamy, J. ;
Govardhan, D. .
INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN MATERIALS & MANUFACTURING TECHNOLOGIES, 2018, 346
[36]   Prediction of insulating transformer oils breakdown voltage considering barrier effect based on artificial neural networks [J].
Sherif S. M. Ghoneim ;
Sobhy S. Dessouky ;
Adel A. Elfaraskoury ;
Ahmed B. Abo Sharaf .
Electrical Engineering, 2018, 100 :2231-2242
[37]   Enhancing Solar Radiation Prediction for Computational-Constrained Environments Using Hybrid Artificial Neural Networks [J].
Cardozo, D. O. ;
Medina, B. ;
Quintero, C. ;
Pardo, M. .
IEEE ACCESS, 2024, 12 :196382-196390
[38]   Using Artificial Neural Networks for Short-Term Ship Motion Prediction during Deck Landings [J].
Lakkis, Jonathan ;
Bil, Cees ;
Marzocca, Pier ;
Sgarioto, Daniel ;
MacPherson, Bradley .
AIAA SCITECH 2024 FORUM, 2024,
[39]   Application of sensor data based predictive maintenance and artificial neural networks to enable Industry 4.0 [J].
Fordal, Jon Martin ;
Schjolberg, Per ;
Helgetun, Hallvard ;
Skjermo, Tor Oistein ;
Wang, Yi ;
Wang, Chen .
ADVANCES IN MANUFACTURING, 2023, 11 (02) :248-263
[40]   Application of sensor data based predictive maintenance and artificial neural networks to enable Industry 4.0 [J].
Jon Martin Fordal ;
Per Schjølberg ;
Hallvard Helgetun ;
Tor Øistein Skjermo ;
Yi Wang ;
Chen Wang .
Advances in Manufacturing, 2023, 11 :248-263