The influence of input data standardization method on prediction accuracy of artificial neural networks

被引:64
作者
Anysz, Hubert [1 ]
Zbiciak, Artur [1 ]
Ibadov, Nabi [1 ]
机构
[1] Warsaw Univ Technol, Fac Civil Engn, Armii Ludowej16, PL-00637 Warsaw, Poland
来源
XXV POLISH - RUSSIAN - SLOVAK SEMINAR -THEORETICAL FOUNDATION OF CIVIL ENGINEERING | 2016年 / 153卷
关键词
input data standardization; artificial neural networks ANN; building contracts completion date predicting;
D O I
10.1016/j.proeng.2016.08.081
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Achieving good results in applying artificial neural networks (ANN) in predicting requires some preparatory works on the set of data. One of them is standardization which is necessary when nonlinear activation function is applied. Basing on predicting completion period of building contracts by multi-layer ANN with error backpropagation algorithm, six different methods of input data standardization were checked in order to determine which allows to achieve the most accurate predictions. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:66 / 70
页数:5
相关论文
共 11 条
[1]  
Anysz H., 2012, ARCH I INZYNIERII LA, P29
[2]  
Anysz H., 2013, AUTOBUSY
[3]  
Anysz H, 2012, TECHNIKA TRANSPORTU, P2127
[5]   Multiple-criteria analysis of plasterboard systems [J].
Kaftanowicz, Michal ;
Krzeminski, Michal .
XXIV R-S-P SEMINAR, THEORETICAL FOUNDATION OF CIVIL ENGINEERING (24RSP) (TFOCE 2015), 2015, 111 :364-370
[6]  
Lesniak A, 2010, Zeszyty Naukowe WSOWL, V3, P332
[7]  
Lesniak A., 2012, TECHNICAL T, P57
[8]  
Osowski S., 1997, SIECI NEURONOWE UJEC
[9]  
Tadeusiewicz R., 1993, Sieci Neuronowe
[10]  
Zavadskas EK, 2008, INFORMATICA-LITHUAN, V19, P303