Approximate optimal solutions and nonlinear Lagrangian functions

被引:9
作者
Huang, XX [2 ]
Yang, XQ
机构
[1] Chongqing Normal Univ, Dept Math & Comp Sci, Chongqing 400047, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
澳大利亚研究理事会;
关键词
nonlinear programming; approximate solution; nonlinear Lagrangian; Ekeland's variational principle;
D O I
10.1023/A:1017960629124
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
There is an increasing interest in the study of optimality conditions of approximate solutions for nonlinear optimization problems. In this paper, relationships between approximate optimal values and approximate roots of a nonlinear function are explored via a nonlinear Lagrangian function. Almost approximate optimal solutions are investigated by means of nonlinear Lagrangian functions.
引用
收藏
页码:51 / 65
页数:15
相关论文
共 20 条
[1]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[2]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[3]   A sufficient and necessary condition for nonconvex constrained optimization [J].
Goh, CJ ;
Yang, XQ .
APPLIED MATHEMATICS LETTERS, 1997, 10 (05) :9-12
[4]  
HUANG XX, UNPUB NONLINEAR LAGR
[5]  
HUANG XX, UNPUB DUALITY MULTIO
[6]  
LI D, 1999, JOTA, V102, P385
[7]   epsilon-Pareto optimality for nondifferentiable multiobjective programming via penalty function [J].
Liu, JC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (01) :248-261
[8]   EPSILON-DUALITY THEOREM OF NONDIFFERENTIABLE NONCONVEX MULTIOBJECTIVE PROGRAMMING [J].
LIU, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 69 (01) :153-167
[9]  
LORIDAN P, 1982, MATH PROGRAM STUD, V19, P140, DOI 10.1007/BFb0120986
[10]   EPSILON-SOLUTIONS IN VECTOR MINIMIZATION PROBLEMS [J].
LORIDAN, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1984, 43 (02) :265-276