Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation

被引:175
作者
Yin, An [1 ,2 ,3 ]
Taylor, Michael H. [4 ]
机构
[1] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
[3] China Univ Geosci Beijing, Struct Geol Grp, Beijing 100085, Peoples R China
[4] Univ Kansas, Dept Geol, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
INDIA-ASIA COLLISION; METAMORPHIC CORE COMPLEXES; EAST-WEST EXTENSION; RIGHT-LATERAL SHEAR; LOWER CRUSTAL FLOW; TIBETAN PLATEAU; TECTONIC EVOLUTION; SOUTHERN TIBET; GARLOCK FAULT; SEISMIC ANISOTROPY;
D O I
10.1130/B30159.1
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
V-shaped conjugate strike-slip faults occur widely on Earth, Venus, and Mars in the solar system. They commonly lie at 60 degrees-75 degrees in map view from the maximum compressive stress (sigma(1)) direction. This fault pattern cannot be explained directly by the Coulomb fracture criterion, which predicts the formation of X-shaped shear fractures at 30 degrees from the sigma(1) direction. Possible explanations of this odd fault geometry include rotation of early formed Coulomb fractures or reactivation of preexisting weakness. Here, we show that none of these mechanisms is feasible for the formation of a late Cenozoic conjugate strikeslip fault system in central Tibet. Instead, its initiation can be best explained by distributed deformation during the formation of two parallel and adjoining shear zones that have opposing senses of shear. Our suggestion is based on the current global positioning system (GPS) velocity field in Tibet, which can be divided into two east-trending shear zones: a northern left-slip zone consisting of active ENE-striking left-slip faults, and a southern right-slip zone consisting of active WNW-striking right-slip faults. The correlation between the GPS strain field and the fault pattern suggests that the central Tibet conjugate faults may have initiated as two sets of Riedel shears in the two parallel but separate shear zones. Because the two east-trending shear zones also experience north-south contraction, we refer to this mechanism of conjugate-fault formation as paired generalshear (PGS) deformation. Assuming a Newtonian fluid, the observed Tibetan GPS velocity field requires the paired shear zones to have formed either by gravitational spreading of the Tibetan lithosphere or a horizontal shear at the base of the upper crust or mantle lithosphere. We demonstrate the feasibility of the two inferred mechanisms for the formation of V-shaped conjugate faults using simple sandbox experiments. Our paired general-shear (PGS) model implies that the combined effect of the state of strain and the state of stress favors only one set (i.e., Riedel shear) of Coulomb conjugate shear fractures under general shear flow. It also requires continuum deformation rather than discrete extrusion tectonics as the most dominant mode of deformation during the late Cenozoic development of the central Tibetan Plateau.
引用
收藏
页码:1798 / 1821
页数:24
相关论文
共 143 条
[41]   Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction [J].
Ding, L ;
Kapp, P ;
Zhong, DL ;
Deng, WM .
JOURNAL OF PETROLOGY, 2003, 44 (10) :1833-1865
[42]   Evaluating sand and clay models: do rheological differences matter? [J].
Eisenstadt, G ;
Sims, D .
JOURNAL OF STRUCTURAL GEOLOGY, 2005, 27 (08) :1399-1412
[43]   FINITE STRAIN CALCULATIONS OF CONTINENTAL DEFORMATION .2. COMPARISON WITH THE INDIA-ASIA COLLISION ZONE [J].
ENGLAND, P ;
HOUSEMAN, G .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1986, 91 (B3) :3664-3676
[44]   RIGHT-LATERAL SHEAR AND ROTATION AS THE EXPLANATION FOR STRIKE-SLIP FAULTING IN EASTERN TIBET [J].
ENGLAND, P ;
MOLNAR, P .
NATURE, 1990, 344 (6262) :140-142
[45]   EXTENSION DURING CONTINENTAL CONVERGENCE, WITH APPLICATION TO THE TIBETAN PLATEAU [J].
ENGLAND, P ;
HOUSEMAN, G .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1989, 94 (B12) :17561-17579
[46]   An overview of the petroleum system of Maracaibo Basin [J].
Escalona, A ;
Mann, P .
AAPG BULLETIN, 2006, 90 (04) :657-678
[47]  
FIELDING E, 1994, GEOLOGY, V22, P163, DOI 10.1130/0091-7613(1994)022<0163:HFIT>2.3.CO
[48]  
2
[49]   Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data [J].
Flesch, LM ;
Holt, WE ;
Silver, PG ;
Stephenson, M ;
Wang, CY ;
Chan, WW .
EARTH AND PLANETARY SCIENCE LETTERS, 2005, 238 (1-2) :248-268
[50]   Backarc extension and collision: an experimental approach to the tectonics of Asia [J].
Fournier, M ;
Jolivet, L ;
Davy, P ;
Thomas, JC .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2004, 157 (02) :871-889