Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation

被引:167
作者
Yin, An [1 ,2 ,3 ]
Taylor, Michael H. [4 ]
机构
[1] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
[3] China Univ Geosci Beijing, Struct Geol Grp, Beijing 100085, Peoples R China
[4] Univ Kansas, Dept Geol, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
INDIA-ASIA COLLISION; METAMORPHIC CORE COMPLEXES; EAST-WEST EXTENSION; RIGHT-LATERAL SHEAR; LOWER CRUSTAL FLOW; TIBETAN PLATEAU; TECTONIC EVOLUTION; SOUTHERN TIBET; GARLOCK FAULT; SEISMIC ANISOTROPY;
D O I
10.1130/B30159.1
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
V-shaped conjugate strike-slip faults occur widely on Earth, Venus, and Mars in the solar system. They commonly lie at 60 degrees-75 degrees in map view from the maximum compressive stress (sigma(1)) direction. This fault pattern cannot be explained directly by the Coulomb fracture criterion, which predicts the formation of X-shaped shear fractures at 30 degrees from the sigma(1) direction. Possible explanations of this odd fault geometry include rotation of early formed Coulomb fractures or reactivation of preexisting weakness. Here, we show that none of these mechanisms is feasible for the formation of a late Cenozoic conjugate strikeslip fault system in central Tibet. Instead, its initiation can be best explained by distributed deformation during the formation of two parallel and adjoining shear zones that have opposing senses of shear. Our suggestion is based on the current global positioning system (GPS) velocity field in Tibet, which can be divided into two east-trending shear zones: a northern left-slip zone consisting of active ENE-striking left-slip faults, and a southern right-slip zone consisting of active WNW-striking right-slip faults. The correlation between the GPS strain field and the fault pattern suggests that the central Tibet conjugate faults may have initiated as two sets of Riedel shears in the two parallel but separate shear zones. Because the two east-trending shear zones also experience north-south contraction, we refer to this mechanism of conjugate-fault formation as paired generalshear (PGS) deformation. Assuming a Newtonian fluid, the observed Tibetan GPS velocity field requires the paired shear zones to have formed either by gravitational spreading of the Tibetan lithosphere or a horizontal shear at the base of the upper crust or mantle lithosphere. We demonstrate the feasibility of the two inferred mechanisms for the formation of V-shaped conjugate faults using simple sandbox experiments. Our paired general-shear (PGS) model implies that the combined effect of the state of strain and the state of stress favors only one set (i.e., Riedel shear) of Coulomb conjugate shear fractures under general shear flow. It also requires continuum deformation rather than discrete extrusion tectonics as the most dominant mode of deformation during the late Cenozoic development of the central Tibetan Plateau.
引用
收藏
页码:1798 / 1821
页数:24
相关论文
共 143 条
  • [1] Shear localisation and strain distribution during tectonic faulting - new insights from granular-flow experiments and high-resolution optical image correlation techniques
    Adam, J
    Urai, JL
    Wieneke, B
    Oncken, O
    Pfeiffer, K
    Kukowski, N
    Lohrmann, J
    Hoth, S
    van der Zee, W
    Schmatz, J
    [J]. JOURNAL OF STRUCTURAL GEOLOGY, 2005, 27 (02) : 283 - 301
  • [2] TECTONICS OF THE ZAGROS OROGENIC BELT OF IRAN - NEW DATA AND INTERPRETATIONS
    ALAVI, M
    [J]. TECTONOPHYSICS, 1994, 229 (3-4) : 211 - 238
  • [3] Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates
    Allen, M
    Jackson, J
    Walker, R
    [J]. TECTONICS, 2004, 23 (02) : TC20081 - 16
  • [4] Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano
    Allmendinger, Richard W.
    Reilinger, Robert
    Loveless, Jack
    [J]. TECTONICS, 2007, 26 (03)
  • [5] Anderson E.M., 1951, The Dynamics of Faulting and Dike Formation with Application to Britain
  • [6] [Anonymous], GEOLOGICAL SOC AM AB
  • [7] [Anonymous], NATO ASI SERIES C
  • [8] [Anonymous], 1988, B GEOLOGICAL I U UPS
  • [9] [Anonymous], GEOLOGICAL SOC AM B
  • [10] [Anonymous], REG GEOL XIZANG AUT