Overlap-free Karatsuba-Ofman polynomial multiplication algorithms

被引:57
作者
Fan, H. [1 ]
Sun, J.
Gu, M.
Lam, K. -Y.
机构
[1] Tsinghua Univ, Key Lab Informat Syst Secur, Beijing 100084, Peoples R China
关键词
PARALLEL MULTIPLIERS; COMPLEXITY; ARCHITECTURE; GF(2(M)); 5-TERM; 6-TERM;
D O I
10.1049/iet-ifs.2009.0039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The authors describe how a simple way to split input operands allows for fast VLSI implementations of subquadratic GF(2)[x] Karatsuba-Ofman multipliers. The theoretical XOR gate delay of the resulting multipliers is reduced significantly. For example, it is reduced by about 33 and 25% for n = 2(t) and n 3(t) (t > 1), respectively. To the best of our knowledge, this parameter has never been improved since the original Karatsuba-Ofman algorithm was first used to design GF(2(n)) multipliers in 1990.
引用
收藏
页码:8 / 14
页数:7
相关论文
共 35 条
[1]  
Afanasyev V. B., 1990, P 2 INT WORKSH ALG C, P6
[2]  
[Anonymous], 1980, ARITHMETIC COMPLEXIT
[3]  
[Anonymous], P 23 BIENN S COMM
[4]   Parallel montgomery multiplication in GF(2k) using trinomial residue arithmetic [J].
Bajard, JC ;
Imbert, L ;
Jullien, GA .
17TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 2005, :164-171
[5]   Low complexity bit-parallel multiplier for GF(2m) defined by all-one polynomials using redundant representation [J].
Chang, KY ;
Hong, DW ;
Cho, HS .
IEEE TRANSACTIONS ON COMPUTERS, 2005, 54 (12) :1628-1630
[6]  
Chang NS, 2005, LECT NOTES COMPUT SC, V3650, P288
[7]   Area efficient hardware implementation of elliptic curve cryptography by iteratively applying Karatsuba's method [J].
Dyka, Z ;
Langendoerfer, P .
DESIGNERS' FORUM: DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION, 2005, :70-75
[8]   Low complexity bit-parallel multipliers for GF(2m) with generator polynomial xm+xk+1 [J].
Elia, M ;
Leone, M ;
Visentin, C .
ELECTRONICS LETTERS, 1999, 35 (07) :551-552
[9]   Polynomial basis multiplication over GF(2m) [J].
Erdem, Serdar S. ;
Yamk, Tugrul ;
Koc, Cetin K. .
ACTA APPLICANDAE MATHEMATICAE, 2006, 93 (1-3) :33-55
[10]   A less recursive variant of Karatsuba-Ofman algorithm for multiplying operands of size a power of two [J].
Erdem, SS ;
Koç, ÇK .
16TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 2003, :28-35