EXPRESSING CARDINALITY QUANTIFIERS IN MONADIC SECOND-ORDER LOGIC OVER CHAINS

被引:2
作者
Barany, Vince [1 ]
Kaiser, Lukasz [2 ,3 ]
Rabinovich, Alexander [4 ]
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
[2] Univ Paris Diderot, Lab Informat Algorithm Fondements & Applicat, F-75205 Paris, France
[3] Univ Paris Diderot, CNRS, F-75205 Paris, France
[4] Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-69978 Tel Aviv, Israel
基金
英国工程与自然科学研究理事会;
关键词
MODEST THEORY; ORDER;
D O I
10.2178/jsl/1305810766
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the extension of monadic second-order logic of order with cardinality quantifiers "there exists uncountably many sets such that... " and "there exists continuum many sets such that ... ". We prove that over the class of countable linear orders the two quantifiers are equivalent and can be effectively and uniformly eliminated. Weaker or partial elimination results are obtained for certain wider classes of chains. In particular, we show that over the class of ordinals the uncountability quantifier can be effectively and uniformly eliminated. Our argument makes use of Shelah's composition method and Ramsey-like theorem for dense linear orders.
引用
收藏
页码:603 / 619
页数:17
相关论文
共 18 条
[1]  
[Anonymous], 1961, Transactions of the American Mathematical Society, DOI [DOI 10.1090/S0002-9947-1961-0139530-9, 10.1090/S0002-9947-1961-0139530-9]
[2]  
[Anonymous], SIBERIAN MATH J
[3]  
[Anonymous], 1960, Z. Math. Logik Grundlagen Math.
[4]  
BARANY V., 2010, FUNDAMENTA INFORM, V100
[5]  
Baudisch A., 1980, DECIDABILITY GEN QUA
[6]  
BUCHI JULIUS R., 1962, STUDIES LOGIC FDN MA, V44, P1
[7]  
BUCHI JULIUS R., 1973, LECT NOTES MATH, V328
[8]  
GUREVICH Y, 1979, J SYMBOLIC LOGIC, V44, P481, DOI 10.2307/2273287
[9]   MONADIC THEORY OF ORDER AND TOPOLOGY, 1 [J].
GUREVICH, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1977, 27 (3-4) :299-319
[10]   MODEST THEORY OF SHORT CHAINS .2. [J].
GUREVICH, Y ;
SHELAH, S .
JOURNAL OF SYMBOLIC LOGIC, 1979, 44 (04) :491-502