Assessment of programs for ligand binding affinity prediction

被引:105
作者
Kim, Ryangguk [1 ]
Skolnick, Jeffrey [1 ]
机构
[1] Georgia Inst Technol, Sch Biol, Ctr Study Syst Biol, Atlanta, GA 30318 USA
关键词
cross docking; binding free energy; AutoDock; X-Score; FlexX; BLEEP; rigid-receptor docking; unfolded receptor decoy; randomized ligand decoy;
D O I
10.1002/jcc.20893
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The prediction of the binding free energy between a ligand and a protein is an important component in the virtual screening and lead optimization of ligands for drug discovery. To determine the quality of current binding free energy estimation programs, we examined FlexX, X-Score, AutoDock, and BLEEP for their performance in binding free energy prediction in various situations including cocrystallized complex structures, cross docking of ligands to their non-cocrystallized receptors, docking of thermally unfolded receptor decoys to their ligands, and complex structures with "randomized" ligand decoys. In no case was there a satisfactory correlation between the experimental and estimated binding free energies over all the datasets tested. Meanwhile, a strong correlation between ligand molecular weight-binding affinity correlation and experimental predicted binding affinity correlation was found. Sometimes the programs also correctly ranked ligands' binding affinities even though native interactions between the ligands and their receptors were essentially lost because of receptor deformation or ligand randomization, and the programs could not decisively discriminate randomized ligand decoys from their native ligands; this suggested that the tested programs miss important components for the accurate capture of specific ligand binding interactions. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:1316 / 1331
页数:16
相关论文
共 55 条
[1]  
Acton F., 1966, ANAL STRAIGHT LINE D
[2]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[3]   Effect of pH and ionic strength on the mechanism of association of rodenticides with natural organic components of soil [J].
André, C ;
Truong, TT ;
Xicluna, A ;
Thomassin, M ;
Guillaume, YC .
CHROMATOGRAPHIA, 2005, 61 (5-6) :225-230
[4]   A scoring function for docking ligands to low-resolution protein structures [J].
Bindewald, E ;
Skolnick, J .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (04) :374-383
[6]   Representing receptor flexibility in ligand docking through relevant normal modes [J].
Cavasotto, CN ;
Kovacs, JA ;
Abagyan, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (26) :9632-9640
[7]   Protein flexibility in ligand docking and virtual screening to protein kinases [J].
Cavasotto, CN ;
Abagyan, RA .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 337 (01) :209-225
[8]   FlexE: Efficient molecular docking considering protein structure variations [J].
Claussen, H ;
Buning, C ;
Rarey, M ;
Lengauer, T .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 308 (02) :377-395
[9]  
Edwards A.L., 1976, INTRO LINEAR REGRESS
[10]   Empirical scoring functions .1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes [J].
Eldridge, MD ;
Murray, CW ;
Auton, TR ;
Paolini, GV ;
Mee, RP .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1997, 11 (05) :425-445