Numerical analysis of superconductivity

被引:2
作者
Alouges, F [1 ]
Bonnaillie, V [1 ]
机构
[1] Univ Paris 11, Dept Math, CNRS, UMR 8628, F-91405 Orsay, France
关键词
D O I
10.1016/j.crma.2003.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the superconductivity, we are interested in the fundamental state of the Schorodinger operator with magnetic field. In this paper, we propose a numerical approach based on the finite elements method to determine the bottom of the spectrum of this operator in general domains. We improve the numerical results by using mesh-refinement techniques based on a posteriori error estimators developed elsewhere. We also look at the monotonicity of the bottom of the spectrum in an angular sector according to the angle to complement the theorical. study of Bonnaillie (C.R. Acad. Sci. Paris, Ser. I 336 (2) (2003) 135-140).
引用
收藏
页码:543 / 548
页数:6
相关论文
共 10 条
[1]  
[Anonymous], RAIRO RAN R
[2]   On the fundamental state for a Schrodinger operator with magnetic field in a domain with corners [J].
Bonnaillie, V .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (02) :135-140
[3]  
BONNAILLIE V, UNPUB FUNDAMENTAL ST
[4]  
BONNAILLIE V, UNPUB POSTERIORI ERR
[5]  
BONNAILLIE V, UNPUB SUPERCONDUCTIV
[6]  
Braess D., 2001, FINITE ELEMENTS
[7]  
de Gennes P. G., 1989, SUPERCONDUCTIVITY ME
[8]   Magnetic bottles in connection with superconductivity [J].
Helffer, B ;
Morame, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 185 (02) :604-680
[9]   ONSET OF SUPERCONDUCTIVITY IN DECREASING FIELDS [J].
SAINTJAMES, D ;
GENNES, PG .
PHYSICS LETTERS, 1963, 7 (05) :306-308
[10]  
Verfurth R., 1996, A review of a posteriori error estimation and adaptive-mesh-refinement techniques