Photosensitizer-Conjugated Hollow ZnFe2O4 Nanoparticles for Antibacterial Near-Infrared Photodynamic Therapy

被引:14
作者
Thakur, Deepika [1 ,2 ]
Qui Thanh Hoai Ta [1 ]
Noh, Jin-Seo [1 ]
机构
[1] Gachon Univ, Dept Phys, Seongnam Si 13120, South Korea
[2] Seoul Natl Univ, Dept Agr Forestry & Bioresources, 1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
photodynamic therapy; ZnFe2O4-Ce6; nanocarriers; photosensitizer; conjugation; low-irradiance; PHOTOTHERMAL THERAPY; NANOCARRIERS; INACTIVATION; RESISTANCE; BACTERIA; DELIVERY; LIGHT;
D O I
10.1021/acsanm.1c04254
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, Ce6-mediated photodynamic therapy (PDT) was investigated for antibacterial inactivation, using ZnFe2O4-Ce6 nanocarriers operated with low-irradiance light in the near-infrared range. To fabricate ZnFe2O4-Ce6 nanocarriers, the highly purified photosensitizer was modified with polyethylenimine (PEI) using a standard 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride-N-hydroxysuccinimide coupling reaction. Then, it was conjugated with hollow ZnFe2O4 nanospheres (NSs). The as-synthesized ZnFe2O4-Ce6 nanocarriers were found to have an average size of similar to 100 nm, increased water solubility, high singlet oxygen generation capability, and broad light absorbance in the range of 400-800 nm. The chemical changes and surface charge confirmed the stable conjugation of PEI-Ce6 with hollow ZnFe2O4-Ce6 NSs. The ZnFe2O4-Ce6 nanocarriers (50 mu g/mL) exhibited excellent antibacterial activities of >98% for every bacterial cell even under the low-irradiance light at 660 nm. Furthermore, the structural examinations revealed that Gram-negative Escherichia coli was more vulnerable than other Gram-positive cells to the nanocarrier-mediated PDT. This work may provide insights into a promising approach using photosensitizers in PDT for combating antibiotic-resistant bacteria.
引用
收藏
页码:1533 / 1541
页数:9
相关论文
共 45 条
[1]   World Health Organization Report: Current Crisis of Antibiotic Resistance [J].
Abadi, Amin Talebi Bezmin ;
Rizvanov, Albert A. ;
Haertle, Thomas ;
Blatt, Nataliya L. .
BIONANOSCIENCE, 2019, 9 (04) :778-788
[2]   Nanoparticles for Advanced Photodynamic Therapy of Cancer [J].
Abrahamse, Heidi ;
Kruger, Cherie Ann ;
Kadanyo, Sania ;
Mishra, Ajay .
PHOTOMEDICINE AND LASER SURGERY, 2017, 35 (11) :581-588
[3]   Structural, thermal and electrical characterizations of PVA:DMSO:NH4SCN gel electrolytes [J].
Awadhia, Arvind ;
Agrawal, S. L. .
SOLID STATE IONICS, 2007, 178 (13-14) :951-958
[4]   Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways [J].
Baptista, Mauricio S. ;
Cadet, Jean ;
Di Mascio, Paolo ;
Ghogare, Ashwini A. ;
Greer, Alexander ;
Hamblin, Michael R. ;
Lorente, Carolina ;
Nunez, Silvia Cristina ;
Ribeiro, Martha Simoes ;
Thomas, Andres H. ;
Vignoni, Mariana ;
Yoshimura, Tania Mateus .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2017, 93 (04) :912-919
[5]   Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans" [J].
Baptista, Pedro V. ;
McCusker, Matthew P. ;
Carvalho, Andreia ;
Ferreira, Daniela A. ;
Mohan, Niamh M. ;
Martins, Marta ;
Fernandes, Alexandra R. .
FRONTIERS IN MICROBIOLOGY, 2018, 9
[6]  
Bueno J, 2019, NANOTHERANOSTICS: APPLICATIONS AND LIMITATIONS, P41, DOI 10.1007/978-3-030-29768-8_3
[7]   Antimicrobial Resistance: Implications and Costs [J].
Dadgostar, Porooshat .
INFECTION AND DRUG RESISTANCE, 2019, 12 :3903-3910
[8]  
Dima V F, 2002, Roum Arch Microbiol Immunol, V61, P159
[9]   Nanosheet assembled hollow ZnFe2O4 microsphere as anode for lithium-ion batteries [J].
Fang, Zhibo ;
Zhang, Lening ;
Qi, Hui ;
Yue, Huijuan ;
Zhang, Tong ;
Zhao, Xiaosen ;
Chen, Gang ;
Wei, Yingjin ;
Wang, Chunzhong ;
Zhang, Dong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 762 :480-487
[10]   Nanoparticle-based local antimicrobial drug delivery [J].
Gao, Weiwei ;
Chen, Yijie ;
Zhang, Yue ;
Zhang, Qiangzhe ;
Zhang, Liangfang .
ADVANCED DRUG DELIVERY REVIEWS, 2018, 127 :46-57