On idempotents of a class of commutative rings

被引:4
作者
de Melo Hernandez, Fernanda D. [1 ]
Hernandez Melo, Cesar A. [1 ]
Tapia-Recillas, Horacio [2 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, Ave Colombo 5790, BR-87020900 Maringa, Parana, Brazil
[2] Univ Autonoma Metropolitana, Dept Matemat, Unidad Iztapalapa, Mexico City, DF, Mexico
关键词
Chain ring; commutative ring; group ring; idempotent element; nilpotent ideal; CYCLIC CODES;
D O I
10.1080/00927872.2020.1754424
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present work, a procedure for determining idempotents of a commutative ring having a sequence of ideals with certain properties is presented. As an application of this procedure, idempotent elements of various commutative rings are determined. Several examples are included illustrating the main results.
引用
收藏
页码:4013 / 4026
页数:14
相关论文
共 24 条
[1]  
Andriatahiny H., 2016, BJMCS, V18, P1, DOI [10.9734/BJMCS/2016/26735, DOI 10.9734/BJMCS/2016/26735]
[2]   Semisimple finite group algebra of a generalized strongly monomial group [J].
Bakshi, Gurmeet K. ;
Kaur, Gurleen .
FINITE FIELDS AND THEIR APPLICATIONS, 2019, 60
[3]   A generalization of strongly monomial groups [J].
Bakshi, Gurmeet K. ;
Kaur, Gurleen .
JOURNAL OF ALGEBRA, 2019, 520 :419-439
[4]   Character triples and Shoda pairs [J].
Bakshi, Gurmeet K. ;
Kaur, Gurleen .
JOURNAL OF ALGEBRA, 2017, 491 :447-473
[5]   Semisimple metacyclic group algebras [J].
Bakshi, Gurmeet K. ;
Gupta, Shalini ;
Passi, Inder Bir S. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (04) :379-396
[6]  
Berman S.D., 1967, Kibernetika, vol, V3, P17
[7]   On group codes with complementary duals [J].
de la Cruz, Javier ;
Willems, Wolfgang .
DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (09) :2065-2073
[8]   A NEW METHOD FOR CALCULATION OF IDEMPOTENT MATRICES OF DENSITY AND FULL ENERGIES OF MULTIELECTRON SYSTEMS [J].
DOBROTVORSKY, AM .
TEORETICHESKAYA I EKSPERIMENTALNAYA KHIMIYA, 1990, 26 (01) :1-5
[9]   Idempotents in group algebras and minimal abelian codes [J].
Ferraz, Raul Antonio ;
Milies, Cesar Polcino .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (02) :382-393
[10]  
Haq R.U., 2017, ARXIV170506600V2QUAN