On the inverse problem of linear programming and its application to minimum weight perfect k-matching

被引:16
作者
Huang, SM [1 ]
Liu, ZH
机构
[1] Acad Sinica, Inst Policy & Management, Beijing 100080, Peoples R China
[2] Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China
关键词
linear programming; inverse problem; bipartite graph; strongly polynomial algorithm;
D O I
10.1016/S0377-2217(97)00444-X
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We first introduce the inverse problem of linear programming. We then apply it to the inverse problem of minimum weight perfect k-matching of bipartite graphs. We show that there is a strongly polynomial algorithm for solving the problem. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 9 条
[1]  
Ahuja RK., 1993, NETWORK FLOWS THEORY
[2]   ON THE USE OF AN INVERSE SHORTEST PATHS ALGORITHM FOR RECOVERING LINEARLY CORRELATED COSTS [J].
BURTON, D ;
TOINT, PL .
MATHEMATICAL PROGRAMMING, 1994, 63 (01) :1-22
[3]   ON AN INSTANCE OF THE INVERSE SHORTEST PATHS PROBLEM [J].
BURTON, D ;
TOINT, PL .
MATHEMATICAL PROGRAMMING, 1992, 53 (01) :45-61
[4]  
BURTON D, 1994, INVERSE SHORTEST PAT
[5]   FIBONACCI HEAPS AND THEIR USES IN IMPROVED NETWORK OPTIMIZATION ALGORITHMS [J].
FREDMAN, ML ;
TARJAN, RE .
JOURNAL OF THE ACM, 1987, 34 (03) :596-615
[6]  
HU Z, STRONGLY POLYNOMIAL
[7]  
Kuhn H. W., 1956, Naval Research Logistics Quarterly, V3, P253, DOI [10.1002/nav.3800030404, DOI 10.1002/NAV.3800030404]
[8]  
MA ZF, INVERSE COMBINATORIA
[9]   A STRONGLY POLYNOMIAL ALGORITHM TO SOLVE COMBINATORIAL LINEAR-PROGRAMS [J].
TARDOS, E .
OPERATIONS RESEARCH, 1986, 34 (02) :250-256