Visual information processing using cellular neural networks for mobile robot

被引:0
|
作者
Xu, Guo-Bao [1 ]
Yin, Yi-Xin [1 ]
Yin, Lu [1 ]
Hao, Yan-ShUang [1 ]
Wang, Zhen-Yu [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Informat Engn, Beijing 100083, Peoples R China
[2] Guangdong Ocean Univ, Informat Sch, Zhanjiang 524088, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual information processing is one of the key technologies for robot visual navigation, whose speed directly determines the quality of the visual navigation. Taking advantage of the parallel image processing capability of cellular neural networks (CNN), we propose a fast algorithm using CNN for mobile visual information processing. In the algorithm, convex restoration, gray threshold, dilation and erosion, and edge detection using CNN are performed to achieve road image filtering, image segmentation, edge detection, and other image processing operations respectively. Experimental results demonstrated that the CNN has strong image processing adaptability, which can fast achieve structured and unstructured roads filtering, image segmentation, and edge detection. The proposed method can eliminate the influence of shadows and water marks on the segmentation of road images, and can segment and detect the lane area quickly, effectively and robustly.
引用
收藏
页码:1046 / 1050
页数:5
相关论文
共 50 条
  • [31] Safe Navigation and Target Recognition for a Mobile Robot Using Neural Networks
    Jebur, Mustafa Hatem
    Ali, Mohammad M.
    2017 14TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2017, : 705 - 712
  • [32] Unknown Environment Representation for Mobile Robot Using Spiking Neural Networks
    Alamdari, Amir Reza Saffari Azar
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 6, 2005, : 49 - 52
  • [33] Drift compensation of a holonomic mobile robot using recurrent neural networks
    Canbek, Kansu Oguz
    Yalcin, Hulya
    Baran, Eray A.
    INTELLIGENT SERVICE ROBOTICS, 2022, 15 (03) : 399 - 409
  • [34] Design of a navigation system for a household mobile robot using neural networks
    Tse, PW
    Lang, S
    Leung, KC
    Sze, HC
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 2151 - 2156
  • [35] Speed Control of a Mobile Robot Using Neural Networks and Fuzzy Logic
    Harb, Moufid
    Abielmona, Rami
    Petriu, Emil
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 1346 - 1352
  • [36] Autonomous Motion of Mobile Robot Using Fuzzy-Neural Networks
    Moran Cardenas, Antonio
    Razuri, Javier G.
    Sundgren, David
    Rahmani, Rahim
    2013 12TH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (MICAI 2013), 2013, : 80 - 84
  • [37] Drift compensation of a holonomic mobile robot using recurrent neural networks
    Kansu Oguz Canbek
    Hulya Yalcin
    Eray A. Baran
    Intelligent Service Robotics, 2022, 15 : 399 - 409
  • [38] Practical point stabilization of a nonholonomic mobile robot using neural networks
    Fierro, R
    Lewis, FL
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 1722 - 1727
  • [39] Scene Classification Using Unsupervised Neural Networks for Mobile Robot Vision
    Madokoro, Hirokazu
    Utsumi, Yuya
    Sato, Kazuhito
    2012 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE), 2012, : 1568 - 1573
  • [40] Wheeled Mobile Robot Control Using Virtual Pheromones and Neural Networks
    Filipescu, A.
    Susnea, I.
    Filipescu, S.
    Stamatescu, G.
    2009 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-3, 2009, : 157 - +