Inverse Laplace transforms of products of Whittaker functions

被引:0
作者
Beals, Richard [1 ]
Kannai, Yakar [2 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2008年 / 464卷 / 2092期
关键词
Kummer functions; Whittaker functions; Laplace transform;
D O I
10.1098/rspa.2007.0248
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identities of the form W-1(z)W-2(zeta) = integral(infinity)(0) e(-r)g(z,zeta,T)dr are proved. Here W-1 is either of the Whittaker functions W-k,W-mu or M-k,M-mu and W-2 is either ofW(K',mu) or M-K',M--mu. The function g has, piecewise, a form that involves a hypergeometric function of a rational function of z and zeta. These identities make possible the calculation of explicit global propagators for certain singular hyperbolic equations and degenerate hyperbolic equations in two variables of the form x(2k-2)u(yy)+lambda(k-1)x(k-2)u(y)-u(xx) = 0.
引用
收藏
页码:795 / 806
页数:12
相关论文
共 50 条
[11]   New Laplace transforms of Kummer's confluent hypergeometric functions [J].
Kim, Yong Sup ;
Rathie, Arjun K. ;
Cvijovic, Djurdje .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) :1068-1071
[12]   On Laplace transforms with respect to functions and their applications to fractional differential equations [J].
Fahad, Hafiz Muhammad ;
Rehman, Mujeeb Ur ;
Fernandez, Arran .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) :8304-8323
[13]   Relation between the inverse Laplace transforms of I(tβ) and I(t):: Application to the Mittag-Leffler and asymptotic inverse power law relaxation functions [J].
Berberan-Santos, MN .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (02) :265-270
[14]   Relation between the inverse Laplace transforms of I(tβ) and I(t): Application to the Mittag-Leffler and asymptotic inverse power law relaxation functions [J].
Mário N. Berberan-Santos .
Journal of Mathematical Chemistry, 2005, 38 :265-270
[15]   Wright functions of the second kind and Whittaker functions [J].
Francesco Mainardi ;
Richard B. Paris ;
Armando Consiglio .
Fractional Calculus and Applied Analysis, 2022, 25 :858-875
[16]   Wright functions of the second kind and Whittaker functions [J].
Mainardi, Francesco ;
Paris, Richard B. ;
Consiglio, Armando .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (03) :858-875
[17]   SOME REMARKS ON INVERSE LAPLACE TRANSFORMS INVOLVING CONJUGATE BRANCH POINTS WITH APPLICATIONS [J].
Moslehi, Leila ;
Ansari, Alireza .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (03) :107-118
[18]   Abelian Theorems for Laplace and Mehler-Fock Transforms of Generalized Functions [J].
Gonzalez, B. J. ;
Negrin, E. R. .
FILOMAT, 2020, 34 (11) :3655-3662
[19]   An asymptotic analysis of the Fourier-Laplace transforms of certain oscillatory functions [J].
Broucke, Frederik ;
Debruyne, Gregory ;
Vindas, Jasson .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (01)
[20]   An axiomatic approach to the nonlinear theory of generalized functions and consistency of Laplace transforms [J].
Todorov, Todor D. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (09) :695-708