Counting Equilibria of the Kuramoto Model Using Birationally Invariant Intersection Index

被引:18
作者
Chen, Tianran [1 ]
Davis, Robert [2 ]
Mehta, Dhagash [3 ]
机构
[1] Auburn Univ, Dept Math & Comp Sci, Montgomery, AL 36124 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] United Technol Res Ctr, Syst Dept, E Hartford, CT 06108 USA
来源
SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY | 2018年 / 2卷 / 04期
关键词
Kuramoto model; birationally invariant intersection index; BKK bound; SYNCHRONIZATION; OSCILLATORS; NETWORKS; SYSTEM;
D O I
10.1137/17M1145665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Synchronization in networks of interconnected oscillators is a fascinating phenomenon that appears naturally in many independent fields of science and engineering. A substantial amount of work has been devoted to understanding all possible synchronization configurations on a given network. In this setting, a key problem is to determine the total number of such configurations. Through an algebraic formulation for tree and cycle graphs, we provide upper bounds on this number using the theory of the birationally invariant intersection index of a family of rational functions. These bounds are significant and make asymptotic improvements over the best existing bound.
引用
收藏
页码:489 / 507
页数:19
相关论文
共 48 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
[Anonymous], 1985, SPRINGER SERIES SYNE, DOI DOI 10.1007/978-3-642-69689-3
[3]   GEOMETRIC CRITICAL-POINT ANALYSIS OF LOSSLESS POWER SYSTEM MODELS [J].
BAILLIEUL, J ;
BYRNES, CI .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1982, 29 (11) :724-727
[4]   Lattice-point generating functions for free sums of convex sets [J].
Beck, Matthias ;
Jayawant, Pallavi ;
McAllister, Tyrrell B. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (06) :1246-1262
[5]  
Beck Matthias, 2015, UNDERGRADUATE TEXTS
[6]  
Bernstein D. N., 1975, FUNCT ANAL APPL, V9, P183, DOI [DOI 10.1007/BF01075595, 10.1007/BF01075595]
[7]  
Blekhman II., 1988, SYNCHRONIZATION SCI
[8]  
Braun B, 2006, ELECTRON J COMB, V13
[9]   GRAPH HOMOLOGY AND STABILITY OF COUPLED OSCILLATOR NETWORKS [J].
Bronski, Jared C. ;
Deville, Lee ;
Ferguson, Timothy .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (03) :1126-1151
[10]  
Canny J., 1991, Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation. ISSAC '91, P96, DOI 10.1145/120694.120707