SnSe2/FeSe2 Nanocubes Capsulated in Nitrogen-Doped Carbon Realizing Stable Sodium-Ion Storage at Ultrahigh Rate

被引:39
作者
Gao, Xiaoyu [1 ]
Kuai, Yixi [1 ]
Xu, Zhixin [1 ]
Cao, Yongjie [2 ,3 ]
Wang, Nan [2 ,3 ]
Hirano, Shin-ichi [4 ]
Nuli, Yanna [1 ]
Wang, Jiulin [1 ]
Yang, Jun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Electrochem Energy Devices Res Ctr, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Dept Chem, Shanghai 200433, Peoples R China
[3] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[4] Shanghai Jiao Tong Univ, Hirano Inst Mat Innovat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
anodes; bimetallic selenides; core-shell structures; sodium-ion batteries; HIGH-PERFORMANCE ANODE;
D O I
10.1002/smtd.202100437
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal selenides have attracted increasing attention recently as anodes for sodium-ion batteries (SIBs) because of their large capacities, high electric conductivity, as well as environmental benignity. However, the application of metal selenides is hindered by the huge volume variation, which causes electrode structure devastation and the consequent degrading cycling stability and rate capability. To overcome the aforementioned obstacles, herein, SnSe2/FeSe2 nanocubes capsulated in nitrogen-doped carbon (SFS@NC) are fabricated via a facile co-precipitation method, followed by poly-dopamine wrapping and one-step selenization/carbonization procedure. The most remarkable feature of SFS@NC is the ultra-stability under high current density while delivering a large capacity. The synergistic effect of dual selenide components and core-shell architecture mitigates the volume effect, alleviates the agglomeration of nanoparticles, and further improves the electric conductivity. The as-prepared SFS@NC nanocubes present a high capacity of 408.1 mAh g(-1) after 1200 cycles at 6 A g(-1), corresponding to an 85.3% retention, and can achieve a capacity of 345.0 mAh g(-1) at an extremely high current density of 20 A g(-1). The outstanding performance of SFS@NC may provide a hint to future material structure design strategy, and promote further developments and applications of SIBs.
引用
收藏
页数:9
相关论文
共 44 条
[1]   A revised mechanistic model for sodium insertion in hard carbons [J].
Au, Heather ;
Alptekin, Hande ;
Jensen, Anders C. S. ;
Olsson, Emilia ;
O'Keefe, Christopher A. ;
Smith, Thomas ;
Crespo-Ribadeneyra, Maria ;
Headen, Thomas F. ;
Grey, Clare P. ;
Cai, Qiong ;
Drew, Alan J. ;
Titirici, Maria-Magdalena .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3469-3479
[2]  
Bard AJ., 1980, Electrochemical Methods: Fundamentals and Applications
[3]   Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays [J].
Chao, Dongliang ;
Liang, Pei ;
Chen, Zhen ;
Bai, Linyi ;
Shen, He ;
Liu, Xiaoxu ;
Xia, Xinhui ;
Zhao, Yanli ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Shen, Ze Xiang .
ACS NANO, 2016, 10 (11) :10211-10219
[4]   Sn-C and Se-C Co-Bonding SnSe/Few-Layered Graphene Micro-Nano Structure: Route to a Densely Compacted and Durable Anode for Lithium/Sodium-Ion Batteries [J].
Cheng, Deliang ;
Yang, Lichun ;
Hu, Renzong ;
Liu, Jiangwen ;
Che, Renchao ;
Cui, Jie ;
Wu, Yanan ;
Chen, Wanyu ;
Huang, Jianling ;
Zhu, Min ;
Zhao, Yu-Jun .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (40) :36685-36696
[5]   First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber [J].
Cho, Jung Sang ;
Lee, Seung Yeon ;
Kang, Yun Chan .
SCIENTIFIC REPORTS, 2016, 6
[6]   Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries [J].
Dong, Caifu ;
Guo, Lijun ;
Li, Haibo ;
Zhang, Bo ;
Gao, Xue ;
Tian, Fang ;
Qian, Yitai ;
Wang, Debao ;
Xu, Liqiang .
ENERGY STORAGE MATERIALS, 2020, 25 :679-686
[7]   FeSe2 microspheres coated with carbon layers as anode materials for sodium-ion batteries [J].
Dong, Shijia ;
Su, Qingmei ;
Jiao, Weicheng ;
Ding, Shukai ;
Zhang, Miao ;
Du, Gaohui ;
Xu, Bingshe .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
[8]   An update on the reactivity of nanoparticles Co-based compounds towards Li [J].
Grugeon, S ;
Laruelle, S ;
Dupont, L ;
Tarascon, JM .
SOLID STATE SCIENCES, 2003, 5 (06) :895-904
[9]   Size-controlled synthesis and electrochemical performance of porous Fe2O3/SnO2 nanocubes as an anode material for lithium ion batteries [J].
Gu, Cuiping ;
Guan, Wenmei ;
Shim, Jae-Jin ;
Fang, Zhen ;
Huang, Jiarui .
CRYSTENGCOMM, 2017, 19 (04) :708-715
[10]   Sodium-Ion Batteries Paving the Way for Grid Energy Storage [J].
Hirsh, Hayley S. ;
Li, Yixuan ;
Tan, Darren H. S. ;
Zhang, Minghao ;
Zhao, Enyue ;
Meng, Y. Shirley .
ADVANCED ENERGY MATERIALS, 2020, 10 (32)