CS-ResNet: Cost-sensitive residual convolutional neural network for PCB cosmetic defect detection

被引:107
|
作者
Zhang, Huan [1 ]
Jiang, Liangxiao [1 ,2 ]
Li, Chaoqun [3 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Minist Educ, Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China
[3] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
PCB cosmetic defect detection; Residual convolutional neural network; Class imbalance; Cost-sensitive learning;
D O I
10.1016/j.eswa.2021.115673
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the printed circuit board (PCB) industry, cosmetic defect detection is an essential process to ensure product quality. However, existing PCB cosmetic defect detection approaches have a high false alarm rate, which lead to expensive labor costs of manual confirmation. To solve this problem, some traditional machine learning-based approaches have been proposed, but they just utilize hand-crafted features to build classifiers and thus are rough and sub-optimal. Recently, due to its powerful capability in automatic feature extraction, convolutional neural network (CNN) has been widely used in PCB cosmetic defect detection. However, few of them pay attention to the imbalanced class distribution as well as the different misclassification costs of real and pseudo defects, both of which are common problems in the PCB industry. To this end, in this study, we propose a novel model called cost-sensitive residual convolutional neural network (CS-ResNet) by adding a cost-sensitive adjustment layer in the standard ResNet. Specifically, we assign larger weights to minority real defects based on the class-imbalance degree and then optimize CS-ResNet by minimizing the weighted cross-entropy loss function. We conducted a series of experiments by comparing CS-ResNet with the standard ResNet, state-of-theart CNN-based approach Auto-VRS and traditional machine learning-based approach HOG-SVM on a real-world PCB cosmetic defect dataset. Experimental results show that CS-ResNet achieves the highest Sensitivity (0.89), G -mean (0.91) and the lowest misclassification costs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Fastener Defect Detection Algorithm Based on Cost-Sensitive Convolutional Neural Network
    Hou Y.
    Fan H.
    Xiong Y.
    Li L.
    Li B.
    Zhongguo Tiedao Kexue/China Railway Science, 2021, 42 (01): : 26 - 31
  • [2] Cost-Sensitive Siamese Network for PCB Defect Classification
    Miao, Yilin
    Liu, Zhewei
    Wu, Xiangning
    Gao, Jie
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021 (2021)
  • [3] Adaptive learning cost-sensitive convolutional neural network
    Hou, Yun
    Fan, Hong
    Li, Li
    Li, Bailin
    IET COMPUTER VISION, 2021, 15 (05) : 346 - 355
  • [4] Software defect prediction using cost-sensitive neural network
    Arar, Omer Faruk
    Ayan, Kursat
    APPLIED SOFT COMPUTING, 2015, 33 : 263 - 277
  • [5] CSCNN: Cost-Sensitive Convolutional Neural Network for Encrypted Traffic Classification
    Shiva Soleymanpour
    Hossein Sadr
    Mojdeh Nazari Soleimandarabi
    Neural Processing Letters, 2021, 53 : 3497 - 3523
  • [6] CSCNN: Cost-Sensitive Convolutional Neural Network for Encrypted Traffic Classification
    Soleymanpour, Shiva
    Sadr, Hossein
    Soleimandarabi, Mojdeh Nazari
    NEURAL PROCESSING LETTERS, 2021, 53 (05) : 3497 - 3523
  • [7] Dual Cost-sensitive Graph Convolutional Network
    Duan, Yijun
    Liu, Xin
    Jatowt, Adam
    Yu, Hai-tao
    Lynden, Steven
    Kim, Kyoung-Sook
    Matono, Akiyoshi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [8] COMPUTER-AIDED EARLY DIAGNOSIS OF ALZHEIMER'S DISEASE BASED ON COST-SENSITIVE AND DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK
    Sun, Haijing
    Cao, Yong
    Shao, Yichuan
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2022, 22 (09)
  • [9] Cost-sensitive boosting neural networks for software defect prediction
    Zheng, Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (06) : 4537 - 4543
  • [10] Automatic diagnosis of imbalanced ophthalmic images using a cost-sensitive deep convolutional neural network
    Jiang, Jiewei
    Liu, Xiyang
    Zhang, Kai
    Long, Erping
    Wang, Liming
    Li, Wangting
    Liu, Lin
    Wang, Shuai
    Zhu, Mingmin
    Cui, Jiangtao
    Liu, Zhenzhen
    Lin, Zhuoling
    Li, Xiaoyan
    Chen, Jingjing
    Cao, Qianzhong
    Li, Jing
    Wu, Xiaohang
    Wang, Dongni
    Wang, Jinghui
    Lin, Haotian
    BIOMEDICAL ENGINEERING ONLINE, 2017, 16