ADER schemes for three-dimensional non-linear hyperbolic systems

被引:256
作者
Titarev, VA [1 ]
Toro, EF
机构
[1] Univ Trent, Dept Math, Fac Sci, I-38080 Povo, Italy
[2] Univ Trent, Fac Engn, Lab Appl Math, Trento, Italy
基金
英国工程与自然科学研究理事会;
关键词
high-order schemes; weighted essentially non-oscillatory; ADER; generalized Riemann problem; three space dimensions;
D O I
10.1016/j.jcp.2004.10.028
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper. we carry out the extension of the ADER approach to multidimensional non-linear systems of conservation laws. We implement non-linear schemes of up to fourth order of accuracy in both time and space. Numerical results for the compressible Euler equations illustrate the very high order of accuracy and non-oscillatory properties of the new schemes. Compared to the state-of-art finite-volume WENO schemes the ADER schemes are faster, more accurate, need less computer memory and have no theoretical accuracy barrier. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:715 / 736
页数:22
相关论文
共 40 条
[1]  
[Anonymous], 2003, CFD J
[2]   Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy [J].
Balsara, DS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (02) :405-452
[3]   A 2ND-ORDER GODUNOV-TYPE SCHEME FOR COMPRESSIBLE FLUID-DYNAMICS [J].
BENARTZI, M ;
FALCOVITZ, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (01) :1-32
[4]   A FINITE-VOLUME HIGH-ORDER ENO SCHEME FOR 2-DIMENSIONAL HYPERBOLIC SYSTEMS [J].
CASPER, J ;
ATKINS, HL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 106 (01) :62-76
[5]   Runge-Kutta discontinuous Galerkin methods for convection-dominated problems [J].
Cockburn, Bernardo ;
Shu, Chi-Wang .
Journal of Scientific Computing, 2001, 16 (03) :173-261
[6]  
Godunov S. K., 1979, RESOLUTION NUMERIQUE
[7]  
Godunov SK., 1959, MAT SBORNIK, V47, P357
[8]  
GODUNOV SK, 1976, NAUKA PRESS
[9]   ON UPSTREAM DIFFERENCING AND GODUNOV-TYPE SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
LAX, PD ;
VAN LEER, B .
SIAM REVIEW, 1983, 25 (01) :35-61
[10]   Weighted essentially non-oscillatory schemes on triangular meshes [J].
Hu, CQ ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 150 (01) :97-127