Automatic sleep-stage classification for children using single-channel EEG

被引:0
|
作者
Zhu, Liqiang [1 ]
Peng, Lizhi [1 ]
Zhang, Yuan [2 ]
Kos, Anton [3 ]
机构
[1] Univ Jinan, Sch Informat Sci & Engn, Jinan, Peoples R China
[2] Southwest Univ, Coll Elect & Informat Engn, Chongqing, Peoples R China
[3] Univ Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
来源
ELEKTROTEHNISKI VESTNIK | 2021年 / 88卷 / 04期
关键词
sleep-stage classification; EEG; deep learning; 1D-CNN; GRU;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nearly one-third of children suffer from sleep disorders. Although many researches have been conducted on the automatic sleep-stage classification for adults, the sleep stages of children have different characteristics. Therefore, there is an urgent need for sleep-stage classification specifically for children. The paper proposes a deep-learning model for the children automatic sleep-stage classification based on raw single-channel EEG. In the model, we utilize 1D convolutional neural networks (1D-CNN) to extract time-invariant features, and gated recurrent unit (GRU) to learn transition rules among sleep stages automatically from 30 s EEG epochs. Our method is tested on a dataset for children from 2 to 12 years of age. We use six different single-channel EEGs (F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, O2- M1) to train the model separately, where the F4-M1 channel achieves the best results. Experimental results show that our method yields an overall classification accuracy of 83.36% and macro F1-score of 80.98%. This result indicates that our method has a great potential and lays the foundation for further research on the children sleep-stage classification.
引用
收藏
页码:204 / 209
页数:6
相关论文
共 50 条
  • [1] SingleChannelNet: A model for automatic sleep stage classification with raw single-channel EEG
    Zhou, Dongdong
    Wang, Jian
    Hu, Guoqiang
    Zhang, Jiacheng
    Li, Fan
    Yan, Rui
    Kettunen, Lauri
    Chang, Zheng
    Xu, Qi
    Cong, Fengyu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 75
  • [2] Leveraging discriminative features for automatic sleep stage classification based on raw single-channel EEG
    Heng, Xia
    Wang, Miao
    Wang, Zhongmin
    Zhang, Jie
    He, Lang
    Fan, Lin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [3] Cross-scenario automatic sleep stage classification using transfer learning and single-channel EEG
    He, Zhengling
    Tang, Minfang
    Wang, Peng
    Du, Lidong
    Chen, Xianxiang
    Cheng, Gang
    Fang, Zhen
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81
  • [4] MRASleepNet: a multi-resolution attention network for sleep stage classification using single-channel EEG
    Yu, Rui
    Zhou, Zhuhuang
    Wu, Shuicai
    Gao, Xiaorong
    Bin, Guangyu
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (06)
  • [5] An ensemble system for automatic sleep stage classification using single channel EEG signal
    Koley, B.
    Dey, D.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2012, 42 (12) : 1186 - 1195
  • [6] Automatic Sleep Stage Classification Using Temporal Convolutional Neural Network and New Data Augmentation Technique from Raw Single-Channel EEG
    Khalili, Ebrahim
    Asl, Babak Mohammadzadeh
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 204
  • [7] Time-Frequency Convolutional Neural Network for Automatic Sleep Stage Classification Based on Single-Channel EEG
    Wei, Liangjie
    Lin, Youfang
    Wang, Jing
    Ma, Yan
    2017 IEEE 29TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2017), 2017, : 88 - 95
  • [8] CCRRSleepNet: A Hybrid Relational Inductive Biases Network for Automatic Sleep Stage Classification on Raw Single-Channel EEG
    Neng, Wenpeng
    Lu, Jun
    Xu, Lei
    BRAIN SCIENCES, 2021, 11 (04)
  • [9] A lightweight automatic sleep staging method for children using single-channel EEG based on edge artificial intelligence
    Liqiang Zhu
    Changming Wang
    Zhihui He
    Yuan Zhang
    World Wide Web, 2022, 25 : 1883 - 1903
  • [10] A lightweight automatic sleep staging method for children using single-channel EEG based on edge artificial intelligence
    Zhu, Liqiang
    Wang, Changming
    He, Zhihui
    Zhang, Yuan
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (05): : 1883 - 1903