Speech enhancement method based on low-rank approximation in a reproducing kernel Hilbert space

被引:5
|
作者
Zhao, Yanping [1 ]
Qiu, Robert Caiming [2 ]
Zhao, Xiaohui [1 ]
Wang, Bo [1 ]
机构
[1] Jilin Univ, Coll Commun Engn, Changchun 130012, Peoples R China
[2] Tennessee Technol Univ, Dept Elect & Comp Engn, Cookeville, TN 38505 USA
关键词
Speech enhancement; Kernel function; Low-rank approximation; Error bound; NOISE;
D O I
10.1016/j.apacoust.2016.05.008
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Speech signal is corrupted unavoidably by noisy environment in subway, factory, and restaurant or speech from other speakers in speech communication. Speech enhancement methods have been widely studied to minimize noise influence in different linear transform domain, such as discrete Fourier transform domain, Karhunen-Loeve transform domain or discrete cosine transform domain. Kernel method as a nonlinear transform has received a lot of interest recently and is commonly used in many applications including audio signal processing. However this kind of method typically suffers from the computational complexity. In this paper, we propose a speech enhancement algorithm using low-rank approximation in a reproducing kernel Hilbert space to reduce storage space and running time with very little performance loss in the enhanced speech. We also analyze the root mean squared error bound between the enhanced vectors obtained by the approximation kernel matrix and the full kernel matrix. Simulations show that the proposed method can improve the computation speed of the algorithm with the approximate performance compared with that of the full kernel matrix. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:79 / 83
页数:5
相关论文
共 50 条
  • [41] EXACT SOLUTIONS IN STRUCTURED LOW-RANK APPROXIMATION
    Ottaviani, Giorgio
    Spaenlehauer, Pierre-Jean
    Sturmfels, Bernd
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (04) : 1521 - 1542
  • [42] Low-rank approximation pursuit for matrix completion
    Xu, An-Bao
    Xie, Dongxiu
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 95 : 77 - 89
  • [43] On the low-rank approximation of data on the unit sphere
    Chu, M
    Del Buono, N
    Lopez, L
    Politi, T
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (01) : 46 - 60
  • [44] Locally Linear Low-rank Tensor Approximation
    Ozdemir, Alp
    Iwen, Mark A.
    Aviyente, Selin
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 839 - 843
  • [45] Structured low-rank approximation and its applications
    Markovsky, Ivan
    AUTOMATICA, 2008, 44 (04) : 891 - 909
  • [46] Low-Rank Approximation of Integral Operators by Interpolation
    Steffen Börm
    Lars Grasedyck
    Computing, 2004, 72 : 325 - 332
  • [47] Parameterized low-rank binary matrix approximation
    Fomin, Fedor, V
    Golovach, Petr A.
    Panolan, Fahad
    DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (02) : 478 - 532
  • [48] Adaptive low-rank approximation of collocation matrices
    Bebendorf, M
    Rjasanow, S
    COMPUTING, 2003, 70 (01) : 1 - 24
  • [49] On the low-rank approximation by the pivoted Cholesky decomposition
    Harbrecht, Helmut
    Peters, Michael
    Schneider, Reinhold
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) : 428 - 440
  • [50] Software for weighted structured low-rank approximation
    Markovsky, Ivan
    Usevich, Konstantin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 256 : 278 - 292