Speech enhancement method based on low-rank approximation in a reproducing kernel Hilbert space

被引:5
|
作者
Zhao, Yanping [1 ]
Qiu, Robert Caiming [2 ]
Zhao, Xiaohui [1 ]
Wang, Bo [1 ]
机构
[1] Jilin Univ, Coll Commun Engn, Changchun 130012, Peoples R China
[2] Tennessee Technol Univ, Dept Elect & Comp Engn, Cookeville, TN 38505 USA
关键词
Speech enhancement; Kernel function; Low-rank approximation; Error bound; NOISE;
D O I
10.1016/j.apacoust.2016.05.008
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Speech signal is corrupted unavoidably by noisy environment in subway, factory, and restaurant or speech from other speakers in speech communication. Speech enhancement methods have been widely studied to minimize noise influence in different linear transform domain, such as discrete Fourier transform domain, Karhunen-Loeve transform domain or discrete cosine transform domain. Kernel method as a nonlinear transform has received a lot of interest recently and is commonly used in many applications including audio signal processing. However this kind of method typically suffers from the computational complexity. In this paper, we propose a speech enhancement algorithm using low-rank approximation in a reproducing kernel Hilbert space to reduce storage space and running time with very little performance loss in the enhanced speech. We also analyze the root mean squared error bound between the enhanced vectors obtained by the approximation kernel matrix and the full kernel matrix. Simulations show that the proposed method can improve the computation speed of the algorithm with the approximate performance compared with that of the full kernel matrix. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:79 / 83
页数:5
相关论文
共 50 条
  • [31] KERNEL OPTIMIZATION FOR LOW-RANK MULTIFIDELITY ALGORITHMS
    Razi, Mani
    Kirby, Robert M.
    Narayan, Akil
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (01) : 31 - 54
  • [32] Multi-scale low-rank approximation method for image denoising
    Yang Ou
    Bo Zhang
    Bailin Li
    Multimedia Tools and Applications, 2022, 81 : 20357 - 20371
  • [33] Multi-scale low-rank approximation method for image denoising
    Ou, Yang
    Zhang, Bo
    Li, Bailin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (14) : 20357 - 20371
  • [34] Efficient quaternion CUR method for low-rank approximation to quaternion matrix
    Wu, Pengling
    Kou, Kit Ian
    Cai, Hongmin
    Yu, Zhaoyuan
    NUMERICAL ALGORITHMS, 2024,
  • [35] Learning Low-Rank Kernel Matrices with Column-Based Methods
    Liu, Songhua
    Zhang, Junying
    Sun, Keguo
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (07) : 1485 - 1498
  • [36] A Reproducing Kernel Hilbert Space Framework for Information-Theoretic Learning
    Xu, Jian-Wu
    Paiva, Antonio R. C.
    Park , Il
    Principe, Jose C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (12) : 5891 - 5902
  • [37] A Reproducing Kernel Hilbert Space Approach for Q-Ball Imaging
    Kaden, Enrico
    Kruggel, Frithjof
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (11) : 1877 - 1886
  • [38] Parameterized low-rank binary matrix approximation
    Fedor V. Fomin
    Petr A. Golovach
    Fahad Panolan
    Data Mining and Knowledge Discovery, 2020, 34 : 478 - 532
  • [39] LOW-RANK APPROXIMATION TO HETEROGENEOUS ELLIPTIC PROBLEMS
    Li, Guanglian
    MULTISCALE MODELING & SIMULATION, 2018, 16 (01): : 477 - 502
  • [40] STRUCTURED LOW-RANK APPROXIMATION WITH MISSING DATA
    Markovsky, Ivan
    Usevich, Konstantin
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 814 - 830