Existence of Lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case

被引:20
作者
Cellina, A [1 ]
Ferriero, A [1 ]
机构
[1] Univ Milan, Dipartimento Matemat & Applicaz, I-20126 Milan, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2003年 / 20卷 / 06期
关键词
calculus of variations; existence and Lipschitzianity of solutions;
D O I
10.1016/S0294-1449(03)00010-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under general growth assumptions, that include some cases of linear growth, we prove existence of Lipschitzian solutions to the problem of minimizing integral(a)(b) L(x(s), x'(s)) ds with the boundary conditions x (a) = A, x (b) = B. (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:911 / 919
页数:9
相关论文
共 7 条
[1]   On the minimum problem for a class of non-coercive functionals [J].
Cellina, A ;
Treu, G ;
Zagatti, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (01) :225-262
[2]  
CELLINA A, 2001, REPARAMETRIZATIONS N
[3]  
CELLINA A, UNPUB T AM MATH SOC
[4]  
Cesari L., 1983, OPTIMIZATION THEORY
[5]   REGULARITY PROPERTIES OF SOLUTIONS TO THE BASIC PROBLEM IN THE CALCULUS OF VARIATIONS [J].
CLARKE, FH ;
VINTER, RB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 289 (01) :73-98
[6]  
Ekeland I., 1976, CONVEX ANAL VARIATIO
[7]   A GENERAL CHAIN RULE FOR DERIVATIVES AND CHANGE OF VARIABLES FORMULA FOR LEBESGUE INTEGRAL [J].
SERRIN, J ;
VARBERG, DE .
AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (05) :514-&