Bifacial Schottky-Junction Plasmonic-Based Solar Cell

被引:3
作者
Farhat, Mohamed [1 ]
Baloch, Ahmer A. B. [2 ]
Rashkeev, Sergey N. [2 ]
Tabet, Nouar [3 ]
Kais, Sabre [4 ,5 ,6 ]
Alharbi, Fahhad H. [7 ,8 ]
机构
[1] King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
[2] Hamad Bin Khalifa Univ, QEERI, POB 34110, Doha, Qatar
[3] Univ Sharjah, Dept Appl Phys & Astron, POB 27272, Sharjah, U Arab Emirates
[4] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
[5] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[6] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[7] King Fahd Univ Petr & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
[8] KA Care Energy Res & Innovat Ctr, Dhahran 31261, Saudi Arabia
关键词
bifacial; optoelectronics; photovoltaics; plasmonics; Schottky junction; PERFECT ABSORBER; EFFICIENCY; DESIGN; SI;
D O I
10.1002/ente.201901280
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Plasmonically-enhanced and Schottky-based devices are very appealing candidates for sunlight energy-harvesting applications. However, this class of structures introduces inherent limitations such as thermionic emission (and the related dark current). This article theoretically proposes using the metal-semiconductor-metal heterojunction under bifacial mode. In this design, plasmonic periodic gratings are introduced in the bifacial configuration to allow collection of light from both faces of the solar junction. This results in improved carrier generation and enhanced device performance of a cell with a 3 mu m thick Si absorber. Bifacial gain for short circuit current is found to be 88%, with a bifaciality factor (the ratio of rear to front response of the device) of 84%. By optimizing the filling fractions of the front and rear plasmonic gratings, the obtained normalized output becomes higher than 25%; i.e., it almost doubles the performance in comparison with the monofacial Schottky solar cell.
引用
收藏
页数:8
相关论文
共 55 条
[1]   Thin-film solar cells [J].
Aberle, Armin G. .
THIN SOLID FILMS, 2009, 517 (17) :4706-4710
[2]   A perfect absorber made of a graphene micro-ribbon metamaterial [J].
Alaee, Rasoul ;
Farhat, Mohamed ;
Rockstuhl, Carsten ;
Lederer, Falk .
OPTICS EXPRESS, 2012, 20 (27) :28017-28024
[3]   Abundant non-toxic materials for thin film solar cells: Alternative to conventional materials [J].
Alharbi, Fahhad ;
Bass, John D. ;
Salhi, Abdelmajid ;
Alyamani, Ahmed ;
Kim, Ho-Cheol ;
Miller, Robert D. .
RENEWABLE ENERGY, 2011, 36 (10) :2753-2758
[4]  
[Anonymous], 2007, Plasmonics: Fundamentals and Applications, DOI DOI 10.1007/0-387-37825-1
[5]  
[Anonymous], Best ResearchCell Efficiency Chart
[6]   Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT* ∼ 33%) solar cell [J].
Asadpour, Reza ;
Chavali, Raghu V. K. ;
Khan, M. Ryyan ;
Alam, Muhammad A. .
APPLIED PHYSICS LETTERS, 2015, 106 (24)
[7]   DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV [J].
ASPNES, DE ;
STUDNA, AA .
PHYSICAL REVIEW B, 1983, 27 (02) :985-1009
[8]  
Atwater H. A., 2011, 2011 37th IEEE Photovoltaic Specialists Conference (PVSC 2011), P000001, DOI 10.1109/PVSC.2011.6185830
[9]   The ASTER spectral library version 2.0 [J].
Baldridge, A. M. ;
Hook, S. J. ;
Grove, C. I. ;
Rivera, G. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (04) :711-715
[10]   Practical Efficiency Limit of Methylammonium Lead Iodide Perovskite (CH3NH3PbI3) Solar Cells [J].
Baloch, Ahmer A. B. ;
Hossain, M. I. ;
Tabet, N. ;
Alharbi, F. H. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (02) :426-434