A kind of Hilbert Boundary Value Problem for generalized analytic functions in Clifford analysis

被引:0
作者
Si Zhongwei [1 ]
Wang Liang [2 ]
Zhong Xia [2 ]
Xin-Lei Feng [1 ]
Liang Lina [3 ]
机构
[1] Leshan Normal Univ, Sch Math & Informat Sci, Leshan 614004, Peoples R China
[2] Weishan 1 Middle Sch, Jining 277600, Peoples R China
[3] Leshan Normal Univ, Sch Fine Arts, Leshan 614004, Peoples R China
来源
2013 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS) | 2013年
关键词
generalized analytic function; Hilbert Boundary Value Problem; Riemann Boundary Value Problem;
D O I
10.1109/CIS.2013.172
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let R-0,R-n be the real Clifford algebra generated by e(1), e(2), ..., e(n) satisfying e(i)e(j) + e(j)e(i) = - 2 delta(ij) for i, j = 1, 2, ..., n. e(0) is the unit element. In this paper, we first give the kernel function for the generalized analytic function. Further, a kind of Hilbert Boundary Value Problem for generalized analytic functions in R-+(n+1) will be investigated and the solution is obtained.
引用
收藏
页码:788 / 792
页数:5
相关论文
共 11 条
  • [1] [Anonymous], 1982, CLIFFORD ANAL
  • [2] Bernstein S., 1996, Bull. Belg. Math. Soc. Simon Stevin, V3, P557
  • [3] Delanghe R., 1970, S STEVIN, V44, P55
  • [4] Delanghe R., 1992, Clifford Algebra and Spinor-Valued Functions
  • [5] GILBERT GE, 1991, CAMBRIDGE STUDIES AD, V26
  • [6] Gong Y., 2004, Complex Var. Elliptic Equ., V49, P303
  • [7] ON THE LEFT LINEAR HILBERT PROBLEM IN CLIFFORD ANALYSIS
    Si, Zhong-Wei
    Du, Jin-Yuan
    [J]. BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS, 2011, : 261 - 269
  • [8] THE HILBERT BOUNDARY VALUE PROBLEM FOR GENERALIZED ANALYTIC FUNCTIONS IN CLIFFORD ANALYSIS
    Si, Zhongwei
    Du, Jinyuan
    [J]. ACTA MATHEMATICA SCIENTIA, 2013, 33 (02) : 393 - 403
  • [9] Xu Z, 1990, S STEVIN, V64, P187
  • [10] Xu ZY, 1996, CLIFFORD ALGEBRAS IN ANALYSIS AND RELATED TOPICS, P285