Additive manufacturing of TiB2-containing CoCrFeMnNi high-entropy alloy matrix composites with high density and enhanced mechanical properties

被引:61
|
作者
Wang, Y. L. [1 ]
Zhao, L. [1 ]
Wan, D. [2 ]
Guan, S. [1 ]
Chan, K. C. [1 ]
机构
[1] Hong Kong Polytech Univ, Adv Mfg Technol Res Ctr, Dept Ind & Syst Engn, Kowloon,Hung Hom, Hong Kong, Peoples R China
[2] Norwegian Univ Sci & Technol, Dept Mech & Ind Engn, Richard Birkelands Vei 2B, N-7491 Trondheim, Norway
关键词
High-entropy alloy; Additive manufacturing; Metal matrix composite; Mechanical property; GRAIN-REFINEMENT; MICROSTRUCTURE; NANOCOMPOSITES; ALUMINUM; INOCULATION; FABRICATION; BEHAVIOR; TIB2;
D O I
10.1016/j.msea.2021.141871
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Near-fully dense CoCrFeMnNi high-entropy alloy (HEA) matrix composites reinforced with 5 wt% TiB2 nanoparticles were successfully additively manufactured via the laser-engineered net shaping technique. Compared to the monolithic CoCrFeMnNi printing process, a higher energy density input is shown to produce a synergic combination of Marangoni flow and capillary force in the laser-generated melt pool. It facilitates the enhancement of wettability, and hence a more uniform distribution of the reinforcement material and a high degree of densification of 99.72%, which are able to delay the early fracture of the material. The as-deposited composites exhibit improved yield strength, surpassing that of the monolithic HEA by 42%. The enhanced strength is mainly ascribed to dispersion strengthening. Besides, the refined grain size, the increased dislocation density, and the additional load transfer effect also contribute to the strength enhancement. Furthermore, the wear resistance properties of the CoCrFeMnNi/TiB2 composite are also shown to be superior to those of the CoCrFeMnNi, indicating a decrease in friction coefficient by 22.4%. The enhanced tribological properties are attributed to the synergic effect of high-hardness and self-lubrication of TiB2 nanoparticles. The findings provide guidelines for achieving high-performance HEA-matrix composites.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Effect of multiple oxides on the mechanical properties of CoCrFeMnNi high-entropy alloy matrix composites
    Song, Yongwook
    Nam, Seungjin
    Kwon, Youngjun
    Cho, Kisub
    Lee, Kee-Ahn
    Choi, Hyunjoo
    POWDER METALLURGY, 2021, 64 (03) : 166 - 172
  • [2] Laser additive manufacturing of nano-TiC particles reinforced CoCrFeMnNi high-entropy alloy matrix composites with high strength and ductility
    Chen, Hongyu
    Lu, Tiwen
    Wang, Yonggang
    Liu, Yang
    Shi, Tongya
    Prashanth, Konda Gokuldoss
    Kosiba, Konrad
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 833
  • [3] Additive manufacturing of high-entropy alloy composites: A review
    Osman, Hamza
    Liu, Lin
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2023, 33 (01) : 1 - 24
  • [4] Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy
    Wu, Z.
    David, S. A.
    Leonard, D. N.
    Feng, Z.
    Bei, H.
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2018, 23 (07) : 585 - 595
  • [5] Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing
    Xu, Zhenlin
    Zhang, Hui
    Du, Xiaojie
    He, Yizhu
    Luo, Hong
    Song, Guangsheng
    Mao, Li
    Zhou, Tingwei
    Wang, Lianglong
    CORROSION SCIENCE, 2020, 177
  • [6] Ultrafine TiB2-TiNiFeCrCoAl high-entropy alloy composite with enhanced mechanical properties
    Fu, Zhezhen
    Koc, Rasit
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 702 : 184 - 188
  • [7] Superior antifouling properties of a CoCrFeMnNi high-entropy alloy
    Son, Sujung
    Kim, Sinyang
    Kwak, Jaeik
    Gu, Gang Hee
    Hwang, Dong Soo
    Kim, Yong-Tae
    Kim, Hyoung Seop
    MATERIALS LETTERS, 2021, 300
  • [8] Tungsten Matrix Composite Reinforced with CoCrFeMnNi High-Entropy Alloy: Impact of Processing Routes on Microstructure and Mechanical Properties
    Satyanarayana, P. V.
    Sokkalingam, R.
    Jena, P. K.
    Sivaprasad, K.
    Prashanth, K. G.
    METALS, 2019, 9 (09)
  • [9] Enhanced mechanical properties of aluminum matrix composites reinforced with high-entropy alloy particles via asymmetric cryorolling
    Luo, Kai-guang
    Wu, Yu-ze
    Xiong, Han-qing
    Zhang, Yun
    Kong, Charlie
    Yu, Hai-liang
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2023, 33 (07) : 1988 - 2000
  • [10] Effect of Annealing Temperature on Pitting Resistance of CoCrFeMnNi High-entropy Alloy Fabricated by Laser Additive Manufacturing
    Jia X.-Q.
    Xu Z.-L.
    Zhou S.-X.
    He Y.-Z.
    Du X.-J.
    Surface Technology, 2023, 52 (02): : 272 - 281