LINEAR SPACE PROPERTIES OF Hp SPACES OF DIRICHLET SERIES

被引:15
作者
Bondarenko, Andriy [1 ]
Brevig, Ole Fredrik [1 ]
Saksman, Eero [1 ,2 ]
Seip, Kristian [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
[2] Univ Helsinki, Dept Math & Stat, FI-00170 Helsinki, Finland
关键词
HARDY-SPACES;
D O I
10.1090/tran/7898
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study H-p spaces of Dirichlet series, called H-p, for the range 0 < p < infinity. We begin by showing that two natural ways to define H-p coincide. We then proceed to study some linear space properties of H-p. More specifically, we study linear functionals generated by fractional primitives of the Riemann zeta function; our estimates rely on certain Hardy-Littlewood inequalities and display an interesting phenomenon, called contractive symmetry between H-p and H-4/p,H- contrasting with the usual L-p duality. We next deduce general coefficient estimates, based on an interplay between the multiplicative structure of H-p and certain new one variable bounds. Finally, we deduce general estimates for the norm of the partial sum operator Sigma(infinity)(n=1) a(n)(n-s) bar right arrow on Sigma(N)(n=1) a(n)(n-s) H-p with 0 < p <= 1, supplementing a classical result of Helson for the range 1 < p < infinity. The results for the coefficient estimates and for the partial sum operator exhibit the traditional schism between the ranges 1 <= p <= infinity and 0 < p < 1.
引用
收藏
页码:6677 / 6702
页数:26
相关论文
共 32 条
[1]   Fatou and brothers Riesz theorems in the infinite-dimensional polydisc [J].
Aleman, Alexandru ;
Olsen, Jan-Fredrik ;
Saksman, Eero .
JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (01) :429-447
[2]   Fourier Multipliers for Hardy Spaces of Dirichlet Series [J].
Aleman, Alexandru ;
Olsen, Jan-Fredrik ;
Saksman, Eero .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (16) :4368-4378
[3]  
[Anonymous], 1958, PACIFIC J MATH
[4]  
Arestov V.V., 1981, IZV AKAD NAUK SSSR M, V45, P3
[5]   The Bohr inequality for ordinary Dirichlet series [J].
Balasubramanian, R. ;
Calado, B. ;
Queffelec, H. .
STUDIA MATHEMATICA, 2006, 175 (03) :285-304
[6]   Hardy spaces of Dirichlet series and their composition operators [J].
Bayart, F .
MONATSHEFTE FUR MATHEMATIK, 2002, 136 (03) :203-236
[7]   Composition operators and embedding theorems for some function spaces of Dirichlet series [J].
Bayart, Frederic ;
Brevig, Ole Fredrik .
MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) :989-1014
[8]   APPROXIMATION NUMBERS OF COMPOSITION OPERATORS ON Hp SPACES OF DIRICHLET SERIES [J].
Bayart, Frederic ;
Queffelec, Herye ;
Seip, Kristian .
ANNALES DE L INSTITUT FOURIER, 2016, 66 (02) :551-588
[9]   Some open problems in complex and harmonic analysis: Report on problem session held during the conference Completeness problems, Carleson measures, and spaces of analytic functions [J].
Beneteau, Catherine ;
Condori, Alberto A. ;
Liaw, Constanze ;
Ross, William T. ;
Sola, Alan A. .
RECENT PROGRESS ON OPERATOR THEORY AND APPROXIMATION IN SPACES OF ANALYTIC FUNCTIONS, 2016, 679 :207-217
[10]   Pseudomoments of the Riemann zeta function [J].
Bondarenko, Andriy ;
Brevig, Ole Fredrik ;
Saksman, Eero ;
Seip, Kristian ;
Zhao, Jing .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (04) :709-724