Cebysev's type inequalities for functions of selfadjoint operators in Hilbert spaces

被引:24
作者
Dragomir, S. S. [1 ]
机构
[1] Victoria Univ, Sch Sci & Engn, Res Grp Math Inequal & Applicat, Melbourne, Vic 8001, Australia
关键词
selfadjoint operators; synchronous (asynchronous) functions; monotonic functions; Cebysev inequality; functions of selfadjoint operators;
D O I
10.1080/03081080902992104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some inequalities for continuous synchronous (asynchronous) functions of selfadjoint linear operators in Hilbert spaces, under suitable assumptions for the involved operators, are given.
引用
收藏
页码:805 / 814
页数:10
相关论文
共 22 条
[1]  
[Anonymous], ANN U M CURIE SKLODO
[2]  
BOUKERRIOUA K., 2007, J INEQUAL PURE APPL, V8
[3]  
DRAGMOIR SS, 1948, STUD U BABES BOLYAI, V35, P157
[4]  
Dragomir S. S., 1993, B ALLAHABAD MATH SOC, V8/9, P37
[5]  
DRAGOMIR S. S., 1988, P 2 S MATH ITS APPL, P61
[6]   On the Cebysev's inequality for weighted means [J].
Dragomir, SS .
ACTA MATHEMATICA HUNGARICA, 2004, 104 (04) :345-355
[7]  
Dragomir SS, 1989, P 3 S MATH ITS APPL, P75
[8]  
DRAGOMIR SS, 1993, ATTI SE MAT FASC U M, V41, P473
[9]  
ebysev P.L., 1948, POLNOE SOBRANIE SOCI, P128
[10]  
Furuta T., 2005, Mond-Pecaric Method in Operator Inequalities.