Finite contractions of graphs with polynomial growth

被引:5
作者
Lukács, A
Seifter, N
机构
[1] CWI, NL-1090 GB Amsterdam, Netherlands
[2] Montanuniv Leoben, Inst Math & Angew Geometrie, A-8700 Leoben, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1006/eujc.2000.0405
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a locally finite, vertex-transitive, infinite graph with polynomial growth. Then there exists a quotient group of Aut(X) which contains a finitely generated nilpotent subgroup N which has the same growth rate as X. We show that X contains a subgraph which is finitely contractible onto the h-dimensional lattice, where h is the Hirsch number of N. (C) 2001 Academic Press.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 14 条
[1]  
Babai Laszlo, 1977, J GRAPH THEOR, V1, P125
[2]  
BASS H, 1972, P LOND MATH SOC, V25, P603
[3]   A NOTE ON BOUNDED AUTOMORPHISMS OF INFINITE-GRAPHS [J].
GODSIL, CD ;
IMRICH, W ;
SEIFTER, N ;
WATKINS, ME ;
WOESS, W .
GRAPHS AND COMBINATORICS, 1989, 5 (04) :333-338
[4]  
GROMOV M, 1981, PUBL MATH-PARIS, V53, P53
[5]  
Halin R., 1973, Abh. Math. Sem. Univer. Hamburg, V39, P251, DOI [10.1007/BF02992834, DOI 10.1007/BF02992834]
[6]   A SURVEY ON GRAPHS WITH POLYNOMIAL-GROWTH [J].
IMRICH, W ;
SEIFTER, N .
DISCRETE MATHEMATICS, 1991, 95 (1-3) :101-117
[7]  
JUNG HA, 1984, EUROP J COMB, V5, P149
[8]   Lattices in graphs with polynomial growth [J].
Lukacs, A ;
Seifter, N .
DISCRETE MATHEMATICS, 1998, 186 (1-3) :227-236
[9]  
Segal D., 1983, POLYCYCLIC GROUPS
[10]   Automorphism groups of graphs with quadratic growth [J].
Seifter, N ;
Trofimov, VI .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) :205-210