Topological non-Hermitian origin of surface Maxwell waves

被引:113
作者
Bliokh, Konstantin Y. [1 ,2 ]
Leykam, Daniel [3 ]
Lein, Max [4 ]
Nori, Franco [1 ,5 ]
机构
[1] RIKEN Cluster Pioneering Res, Theoret Quantum Phys Lab, Wako, Saitama 3510198, Japan
[2] Australian Natl Univ, Nonlinear Phys Ctr, RSPE, Canberra, ACT 0200, Australia
[3] Inst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon 34126, South Korea
[4] Tohoku Univ, Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[5] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
日本科学技术振兴机构; 澳大利亚研究理事会; 日本学术振兴会;
关键词
METAMATERIALS; PLASMONICS;
D O I
10.1038/s41467-019-08397-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Maxwell electromagnetism, describing the wave properties of light, was formulated 150 years ago. More than 60 years ago it was shown that interfaces between optical media (including dielectrics, metals, negative-index materials) can support surface electromagnetic waves, which now play crucial roles in plasmonics, metamaterials, and nano-photonics. Here we show that surface Maxwell waves at interfaces between homogeneous isotropic media described by real permittivities and permeabilities have a topological origin explained by the bulk-boundary correspondence. Importantly, the topological classification is determined by the helicity operator, which is generically non-Hermitian even in lossless optical media. The corresponding topological invariant, which determines the number of surface modes, is a Z(4) number (or a pair of Z(2) numbers) describing the winding of the complex helicity spectrum across the interface. Our theory provides a new twist and insights for several areas of wave physics: Maxwell electromagnetism, topological quantum states, non-Hermitian wave physics, and metamaterials.
引用
收藏
页数:7
相关论文
共 45 条
[1]  
Afanasiev GN, 1996, NUOVO CIMENTO A, V109, P271, DOI 10.1007/BF02731014
[2]   Electromagnetic Helicity in Complex Media [J].
Alpeggiani, F. ;
Bliokh, K. Y. ;
Nori, F. ;
Kuipers, L. .
PHYSICAL REVIEW LETTERS, 2018, 120 (24)
[3]   Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications [J].
Alu, A. ;
Engheta, N. ;
Erentok, A. ;
Ziolkowski, R. W. .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2007, 49 (01) :23-36
[4]   Pairing an epsilon-negative slab with a mu-negative slab:: Resonance, tunneling and transparency [J].
Alù, A ;
Engheta, N .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (10) :2558-2571
[5]  
[Anonymous], 2018, TOPOLOGICAL PHOTONIC
[6]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[7]  
Berestetskii V., 1982, Quantum Electrodynamics
[8]   Photon wave function [J].
BialynickiBirula, I .
PROGRESS IN OPTICS, VOL XXXVI, 1996, 36 :245-294
[9]   Quantum spin Hall effect of light [J].
Bliokh, Konstantin Y. ;
Smirnova, Daria ;
Nori, Franco .
SCIENCE, 2015, 348 (6242) :1448-1451
[10]   Magnetoelectric Effects in Local Light-Matter Interactions [J].
Bliokh, Konstantin Y. ;
Kivshar, Yuri S. ;
Nori, Franco .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)