Effects of oxidative and nitrosative stress in brain on p53 proapoptotic protein in amnestic mild cognitive impairment and Alzheimer disease

被引:71
作者
Cenini, Giovanna [1 ,2 ,3 ]
Sultana, Rukhsana [1 ,2 ]
Memo, Maurizio [3 ]
Butterfield, D. Allan [1 ,2 ]
机构
[1] Univ Kentucky, Dept Chem, Ctr Membrane Sci, Lexington, KY 40506 USA
[2] Univ Kentucky, Sanders Brown Ctr Aging, Lexington, KY 40506 USA
[3] Univ Brescia, Dept Biomed Sci & Biotechnol, I-25124 Brescia, Italy
关键词
mild cognitive impairment (MCI); Alzheimer's disease (AD); apoptosis; oxidative stress; 3-nitrotyrosine; protein carbonyl; p53;
D O I
10.1016/j.freeradbiomed.2008.03.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many studies reported that oxidative and nitrosative stress might be important for the pathogenesis of Alzheimer's disease (AD) beginning with arguably the earliest stage of AD, i.e., as mild cognitive impairment (MCI). p53 is a proapoptotic protein that plays an important role in neuronal death, a process involved in many neurodegenerative disorders. Moreover, p53 plays a key role in the oxidative stress-dependent apoptosis. We demonstrated previously that p53 levels in brain were significantly higher in MCI and AD IPL (inferior parietal lobule) compared to control brains. In addition, we showed that in AD IPL, but not in MCI, HNE, a lipid peroxidation product, was significantly bound to p53 protein. In this report, we studied by means of immunoprecipitation analysis, the levels of markers of protein oxidation, 3-nitrotyrosine (3-NT) and protein carbonyls, in p53 in a specific region of the cerebral cortex, namely the inferior parietal lobule, in MCI and AD compared to control brains. The focus of these studies was to measure the oxidation and nitration status of this important proapoptotic protein, consistent with the hypothesis that oxidative modification of p53 could be involved in the neuronal loss observed in neurodegenerative conditions. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 85
页数:5
相关论文
共 47 条
[1]  
ALMOG N, 1997, BIOCHIM BIOPHYS ACTA, V1333, P1
[2]   Oxidative damage and tyrosine nitration from peroxynitrite [J].
Beckman, JS .
CHEMICAL RESEARCH IN TOXICOLOGY, 1996, 9 (05) :836-844
[3]  
Butterfield D.A., 1997, ADV CELL AGING GERON, V2, P161
[4]   Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment [J].
Butterfield, D. Allan ;
Reed, Tanea ;
Newman, Shelley F. ;
Sultana, Rukhsana .
FREE RADICAL BIOLOGY AND MEDICINE, 2007, 43 (05) :658-677
[5]   Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: Implications for the role of nitration in the progression of Alzheimer's disease [J].
Butterfield, D. Allan ;
Reed, Tanea T. ;
Perluigi, Marzia ;
De Marco, Carlo ;
Coccia, Raffaella ;
Keller, Jeffrey N. ;
Markesbery, William R. ;
Sultana, Rukhsana .
BRAIN RESEARCH, 2007, 1148 :243-248
[6]   Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins [J].
Butterfield, DA ;
Kanski, J .
MECHANISMS OF AGEING AND DEVELOPMENT, 2001, 122 (09) :945-962
[7]   Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: Insights into the development of Alzheimer's disease [J].
Butterfield, DA ;
Poon, HF ;
Clair, DS ;
Keller, JN ;
Pierce, WM ;
Klein, JB ;
Markesbery, WR .
NEUROBIOLOGY OF DISEASE, 2006, 22 (02) :223-232
[8]   Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment [J].
Butterfield, DA ;
Reed, T ;
Perluigi, M ;
De Marco, C ;
Coccia, R ;
Cini, C ;
Sultana, R .
NEUROSCIENCE LETTERS, 2006, 397 (03) :170-173
[9]   Evidence of oxidative damage in Alzheimer's disease brain:: central role for amyloid β-peptide [J].
Butterfield, DA ;
Drake, J ;
Pocernich, C ;
Castegna, A .
TRENDS IN MOLECULAR MEDICINE, 2001, 7 (12) :548-554
[10]   Lipid peroxidation and protein oxidation in Alzheimer's disease brain:: Potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress [J].
Butterfield, DA ;
Lauderback, CM .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 32 (11) :1050-1060