A new general algebraic method with symbolic computation to construct new doubly-periodic solutions of the (2+1)-dimensional dispersive long wave equation

被引:12
作者
Chen, Y [1 ]
Wang, Q
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China
[3] Chinese Acad Sci, MM Key Lab, Beijing 100080, Peoples R China
[4] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
基金
中国博士后科学基金;
关键词
(2+1)-dimensional dispersive long wave equation; Jacobi elliptic functions; travelling wave solution; soliton solution; periodic solution;
D O I
10.1016/j.amc.2004.06.119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For constructing more new exact doubly-periodic solutions in terms of rational form Jacobi elliptic function of nonlinear evolution equations, a new direct and unified algebraic method, named Jacobi elliptic function rational expansion method, is presented and implemented in a computer algebraic system. Compared with most of the existing Jacobi elliptic function expansion methods, the proposed method can be expected to obtain new and more general formal solutions. We choose a (2 + 1)-dimensional dispersive long wave equation to illustrate the method. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:919 / 929
页数:11
相关论文
共 39 条
[1]  
Ablowitz MJ., 1991, Nonlinear Evolution Equations and Inverse Scattering, DOI 10.1017/CBO9780511623998
[2]   SPECTRAL TRANSFORM FOR A 2-SPATIAL DIMENSION EXTENSION OF THE DISPERSIVE LONG-WAVE EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (03) :371-387
[3]  
CHANDRASEKHARAN K, 1978, ELLIPTIC FUNCTION
[4]  
Chen Y, 2003, CHINESE PHYS, V12, P940, DOI 10.1088/1009-1963/12/9/303
[5]   New exact solutions for some nonlinear differential equations using symbolic computation [J].
Chen, Y ;
Zheng, XD ;
Li, B ;
Zhang, HQ .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 149 (01) :277-298
[6]   Generalized extended tanh-function method to construct new explicit exact solutions for the approximate equations for long water waves [J].
Chen, Y ;
Yu, Z .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (05) :601-611
[7]  
Chen Y, 2003, COMMUN THEOR PHYS, V40, P137
[8]   Auto-Backlund transformation and exact solutions for modified nonlinear dispersive mK(m, n) equations [J].
Chen, Y ;
Li, B ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2003, 17 (04) :693-698
[9]   Exact solutions for a new class of nonlinear evolution equations with nonlinear term of any order [J].
Chen, Y ;
Li, B ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2003, 17 (04) :675-682
[10]  
Chen Y, 2003, COMMUN THEOR PHYS, V39, P135