A Note on Some Properties of the Weighted q-Genocchi Numbers and Polynomials

被引:0
作者
Jang, L. C. [1 ]
机构
[1] Konkuk Univ, Dept Math & Comp Sci, Chungju 280701, South Korea
关键词
Q-EULER POLYNOMIALS;
D O I
10.1155/2011/609054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the weighted q-Genocchi numbers and polynomials. From the construction of the weighted q-Genocchi numbers and polynomials, we investigate many interesting identities and relations satisfied by these new numbers and polynomials.
引用
收藏
页数:10
相关论文
共 19 条
[1]  
Cangul I. N.., 2009, Advanced Studies in Contemporary Mathematics, V19, P39
[2]   Q-BERNOULLI NUMBERS AND POLYNOMIALS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1948, 15 (04) :987-1000
[3]   A New q-Analogue of Bernoulli Polynomials Associated with p-Adic q-Integrals [J].
Jang, Lee-Chae .
ABSTRACT AND APPLIED ANALYSIS, 2008,
[4]   On Multiple Generalized w-Genocchi Polynomials and Their Applications [J].
Jang, Lee-Chae .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
[5]   q-Genocchi numbers and polynomials associated with fermionic p-adic invariant integrals on Zp [J].
Jang, Leechae ;
Kim, Taekyun .
ABSTRACT AND APPLIED ANALYSIS, 2008,
[6]   q-Bernstein Polynomials Associated with q-Stirling Numbers and Carlitz's q-Bernoulli Numbers [J].
Kim, T. ;
Choi, J. ;
Kim, Y. H. .
ABSTRACT AND APPLIED ANALYSIS, 2010,
[7]  
Kim T, 2002, RUSS J MATH PHYS, V9, P288
[8]   New approach to q-Euler polynomials of higher order [J].
Kim, T. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2010, 17 (02) :218-225
[9]   Some identities on the q-Euler polynomials of higher order and q-stirling numbers by the fermionic p-adic integral on a"currency sign p [J].
Kim, T. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2009, 16 (04) :484-491
[10]   Some Identities of the Frobenius-Euler Polynomials [J].
Kim, Taekyun ;
Lee, Byungje .
ABSTRACT AND APPLIED ANALYSIS, 2009,