On the strong product of a k-extendable and an l-extendable graph

被引:5
作者
Gyori, E
Imrich, W
机构
[1] Hungarian Acad Sci, Renyi Inst Math, H-1053 Budapest, Hungary
[2] Montanuniv Leoben, A-8700 Leoben, Austria
关键词
Perfect Match; Strong Product;
D O I
10.1007/PL00007244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(1) circle times G(2) be the strong product of a k-extendable graph G(1) and an l-extendable graph G(2), and X an arbitrary set of vertices of G(1) circle times G(2) with cardinality 2[(k + 1) (l + 1)/2]. We show that G(1) circle times G(2) - X contains a perfect matching. It implies that G(1) circle times G(2) is [(k + 1)(l + 1) /2]-extendable, whereas the Cartesian product of G(1) and G(2) is only (k + l + 1)-extendable. As in the case of the Cartesian product, the proof is based on a lemma on the product of a k-extendable graph G and K-2. We prove that G circle times K-2 is (k + 1)extendable, and, a bit surprisingly, it even remains (k + 1)-extendable if we add edges to it.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 5 条
[1]   THE CARTESIAN PRODUCT OF A K-EXTENDIBLE AND AN L-EXTENDIBLE GRAPH IS (K + L + 1)-EXTENDIBLE [J].
GYORI, E ;
PLUMMER, MD .
DISCRETE MATHEMATICS, 1992, 101 (1-3) :87-96
[2]  
Plummer M.D., 1986, Matching theory
[3]  
PLUMMER MD, 1980, DISCRETE MATH, V31, P202
[4]  
Tutte W.T., 1947, J. London Math. Soc., V22, P107, DOI DOI 10.1112/JLMS/S1-22.2.107
[5]   A NOTE ON N-EXTENDIBLE GRAPHS [J].
YU, QL .
JOURNAL OF GRAPH THEORY, 1992, 16 (04) :349-353