A Robust, Multiple Control Barrier Function Framework for Input Constrained Systems

被引:21
作者
Cortez, Wenceslao Shaw [1 ]
Tan, Xiao [1 ]
Dimarogonas, Dimos, V [1 ]
机构
[1] Royal Inst Technol, Sch EECS, S-10044 Stockholm, Sweden
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
Safety; Closed loop systems; Robustness; Asymptotic stability; Trajectory; Stability analysis; Numerical stability; Nonlinear control systems; automatic control; collision avoidance; asymptotic stability; mobile robots;
D O I
10.1109/LCSYS.2021.3133418
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel (Type-II) zeroing control barrier function (ZCBF) for safety-critical control, which generalizes the original ZCBF approach. Our method allows for applications to a larger class of systems (e.g., passivity-based) while still ensuring robustness, for which the construction of conventional ZCBFs is difficult. We also propose a locally Lipschitz continuous control law that handles multiple ZCBFs, while respecting input constraints, which is not currently possible with existing ZCBF methods. We apply the proposed concept for unicycle navigation in an obstacle-rich environment.
引用
收藏
页码:1742 / 1747
页数:6
相关论文
共 23 条
  • [1] CLOSED-LOOP STEERING OF UNICYCLE-LIKE VEHICLES VIA LYAPUNOV TECHNIQUES
    AICARDI, M
    CASALINO, G
    BICCHI, A
    BALESTRINO, A
    [J]. IEEE ROBOTICS & AUTOMATION MAGAZINE, 1995, 2 (01) : 27 - 35
  • [2] Safe Controller Synthesis With Tunable Input-to-State Safe Control Barrier Functions
    Alan, Anil
    Taylor, Andrew J.
    He, Chaozhe R.
    Orosz, Gabor
    Ames, Aaron D.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 908 - 913
  • [3] Integral Control Barrier Functions for Dynamically Defined Control Laws
    Ames, Aaron D.
    Notomista, Gennaro
    Wardi, Yorai
    Egerstedt, Magnus
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (03): : 887 - 892
  • [4] Ames AD, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P3420, DOI [10.23919/ECC.2019.8796030, 10.23919/ecc.2019.8796030]
  • [5] Control Barrier Function Based Quadratic Programs for Safety Critical Systems
    Ames, Aaron D.
    Xu, Xiangru
    Grizzle, Jessy W.
    Tabuada, Paulo
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3861 - 3876
  • [6] BATHIA N.P., 1967, Dynamical Systems: Stability Theory and Applications
  • [7] Control Barrier Functions in Sampled-Data Systems
    Breeden, Joseph
    Garg, Kunal
    Panagou, Dimitra
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 367 - 372
  • [8] ON A CHARACTERIZATION OF FLOW-INVARIANT SETS
    BREZIS, H
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1970, 23 (02) : 261 - &
  • [9] Safe, Passive Control for Mechanical Systems with Application to Physical Human-Robot Interactions
    Cortez, Wenceslao Shaw
    Verginis, Christos K.
    Dimarogonas, Dimos, V
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 3836 - 3842
  • [10] Cortez W. Shaw, 2021, SAFE BY DESIGN CONTR