Fast map matching, an algorithm integrating hidden Markov model with precomputation

被引:153
|
作者
Yang, Can [1 ]
Gidofalvi, Gyozo [1 ]
机构
[1] Royal Inst Technol Sweden, Div Geoinformat, Dept Urban Planning & Environm, KTH, Stockholm, Sweden
关键词
Map matching; precomputation; performance improvement; FLOATING CAR DATA;
D O I
10.1080/13658816.2017.1400548
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wide deployment of global positioning system (GPS) sensors has generated a large amount of data with numerous applications in transportation research. Due to the observation error, a map matching (MM) process is commonly performed to infer a path on a road network from a noisy GPS trajectory. The increasing data volume calls for the design of efficient and scalable MM algorithms. This article presents fast map matching (FMM), an algorithm integrating hidden Markov model with precomputation, and provides an open-source implementation. An upper bounded origin-destination table is precomputed to store all pairs of shortest paths within a certain length in the road network. As a benefit, repeated routing queries known as the bottleneck of MM are replaced with hash table search. Additionally, several degenerate cases and a problem of reverse movement are identified and addressed in FMM. Experiments on a large collection of real-world taxi trip trajectories demonstrate that FMM has achieved a considerable single-processor MM speed of 25,000-45,000 points/second varying with the output mode. Investigation on the running time of different steps in FMM reveals that after precomputation is employed, the new bottleneck is located in candidate search, and more specifically, the projection of a GPS point to the polyline of a road edge. Reverse movement in the result is also effectively reduced by applying a penalty.
引用
收藏
页码:547 / 570
页数:24
相关论文
共 50 条
  • [1] Fast Map-Matching Based on Hidden Markov Model
    Yan, Shenglong
    Yu, Juan
    Zhou, Houpan
    MOBILE COMPUTING, APPLICATIONS, AND SERVICES, MOBICASE 2019, 2019, 290 : 85 - 95
  • [2] An Incremental Map-Matching Algorithm Based on Hidden Markov Model
    Szwed, Piotr
    Pekala, Kamil
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2014, PT II, 2014, 8468 : 579 - 590
  • [3] Fast Hidden Markov Model Map-Matching for Sparse and Noisy Trajectories
    Koller, Hannes
    Widhalm, Peter
    Dragaschnig, Melitta
    Graser, Anita
    2015 IEEE 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, : 2557 - 2561
  • [4] A Hidden Markov Model-Based Map-Matching Algorithm for Wheelchair Navigation
    Ren, Ming
    Karimi, Hassan A.
    JOURNAL OF NAVIGATION, 2009, 62 (03): : 383 - 395
  • [5] Enhanced Map-Matching Algorithm with a Hidden Markov Model for Mobile Phone Positioning
    Luo, An
    Chen, Shenghua
    Xv, Bin
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2017, 6 (11)
  • [6] Map-Matching on Big Data: a Distributed and Efficient Algorithm with a Hidden Markov Model
    Francia, Matteo
    Gallinucci, Enrico
    Vitali, Federico
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1238 - 1243
  • [7] An Online Map Matching Algorithm Based on Second-Order Hidden Markov Model
    Fu, Xiao
    Zhang, Jiaxu
    Zhang, Yue
    JOURNAL OF ADVANCED TRANSPORTATION, 2021, 2021
  • [8] Online Map Matching Algorithm Using Segment Angle Based on Hidden Markov Model
    Xu, Jie
    Ta, Na
    Xing, Chunxiao
    Zhang, Yong
    2017 14TH WEB INFORMATION SYSTEMS AND APPLICATIONS CONFERENCE (WISA 2017), 2017, : 50 - 55
  • [9] Map-matching algorithm based on the junction decision domain and the hidden Markov model
    Qi, Hui
    Di, Xiaoqiang
    Li, Jinqing
    PLOS ONE, 2019, 14 (05):
  • [10] Hidden Markov Model for Floating Car Trajectory Map Matching
    Song, Chengbo
    Yan, Xuefeng
    ADVANCES IN COMPUTER SCIENCE AND UBIQUITOUS COMPUTING, 2018, 474 : 553 - 559