Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study

被引:93
作者
Krasheninnikov, A. V. [1 ,2 ]
Nieminen, R. M. [2 ]
机构
[1] Univ Helsinki, Dept Phys, Helsinki 00014, Finland
[2] Aalto Univ, Dept Appl Phys, Helsinki 00076, Finland
基金
芬兰科学院;
关键词
Graphene; Point defects; Electronic band structure; Strain fields; CARBON NANOTUBES; ELECTRON; MIGRATION; ADATOMS;
D O I
10.1007/s00214-011-0910-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a density functional theory study of transition metal adatoms on a graphene sheet with vacancy-type defects. We calculate the strain fields near the defects and demonstrate that the strain fields around these defects reach far into the unperturbed hexagonal network and that metal atoms have a high affinity to the non-perfect and strained regions of graphene. Metal atoms are therefore attracted by the reconstructed defects. The increased reactivity of the strained graphene makes it possible to attach metal atoms much more firmly than to pristine graphene and supplies a tool for tailoring the electronic structure of graphene. Finally, we analyze the electronic band structure of graphene with defects and show that some defects open a semiconductor gap in graphene, which may be important for carbon-based nanoelectronics.
引用
收藏
页码:625 / 630
页数:6
相关论文
共 57 条
[1]   Two-dimensional carbon semiconductor: Density functional theory calculations [J].
Appelhans, David J. ;
Lin, Zhibin ;
Lusk, Mark T. .
PHYSICAL REVIEW B, 2010, 82 (07)
[2]   Carbon nanotube mats and fibers with irradiation-improved mechanical characteristics:: A theoretical model (vol 93, art no 215503, 2004) -: art. no. 029902 [J].
Åström, JA ;
Krasheninnikov, AV ;
Nordlund, K .
PHYSICAL REVIEW LETTERS, 2005, 94 (02)
[3]   Carbon nanotube mats and fibers with irradiation-improved mechanical characteristics:: A theoretical model -: art. no. 215503 [J].
Åström, JA ;
Krasheninnikov, AV ;
Nordlund, K .
PHYSICAL REVIEW LETTERS, 2004, 93 (21)
[4]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[5]   Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons [J].
Biel, Blanca ;
Blase, X. ;
Triozon, Francois ;
Roche, Stephan .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[6]   Metallic nanoparticles on plasma treated carbon nanotubes:: Nano2hybrids [J].
Bittencourt, C. ;
Felten, A. ;
Douhard, B. ;
Colomer, J.-F. ;
Van Tendeloo, G. ;
Drube, W. ;
Ghijsen, J. ;
Pireaux, J.-J. .
SURFACE SCIENCE, 2007, 601 (13) :2800-2804
[7]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[8]   Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption [J].
Buchs, Gilles ;
Krasheninnikov, Arkady V. ;
Ruffieux, Pascal ;
Groening, Pierangelo ;
Foster, Adam S. ;
Nieminen, Risto M. ;
Groening, Oliver .
NEW JOURNAL OF PHYSICS, 2007, 9
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349