Facial Expression Recognition Using Facial Features and Manifold Learning

被引:0
作者
Ptucha, Raymond [1 ]
Savakis, Andreas [1 ]
机构
[1] Rochester Inst Technol, Rochester, NY 14623 USA
来源
ADVANCES IN VISUAL COMPUTING, PT III | 2010年 / 6455卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper explores robust facial expression recognition techniques based on the underlying low dimensional manifolds embedded in facial images of varying expression. Faces are automatically detected and facial features are extracted, normalized and mapped onto a low dimensional projection surface using Locality Preserving Projections. Alternatively, processed image pixels are used for manifold construction. Classification models robustly estimate expression from the low dimensional projections in manifold space. This method performs robustly in natural settings, enabling more engaging human computer interfaces.
引用
收藏
页码:301 / 309
页数:9
相关论文
共 22 条
[1]  
ALATTAR AM, 1999, P IEEE INT C AC SPEE, V6, P3557
[2]  
BOLIN MR, 2002, SOC IMAGING SCI TECH, P226
[3]  
Cayton L., 2005, Technical Report CS2008-0923
[4]   ACTIVE SHAPE MODELS - THEIR TRAINING AND APPLICATION [J].
COOTES, TF ;
TAYLOR, CJ ;
COOPER, DH ;
GRAHAM, J .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1995, 61 (01) :38-59
[5]  
Ekman P., 1978, Facial action coding system: a technique for the measurement of facial movement
[6]   Automatic facial expression analysis: a survey [J].
Fasel, B ;
Luettin, J .
PATTERN RECOGNITION, 2003, 36 (01) :259-275
[7]  
Ghodsi A., 2006, DIMENSIONALITY REDUC
[8]   Facial Expression Recognition Using Multi-Class Minimax Probability Machine [J].
He, Ping ;
Pan, Guofeng ;
Zhou, Yatong ;
Zhao, Hongdong .
2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, :5933-+
[9]  
HE X, 2003, ADV NERUAL INFORM P, V16
[10]  
Kanade T., 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), P46, DOI 10.1109/AFGR.2000.840611